• 제목/요약/키워드: Railway Vehicle Suspension

검색결과 140건 처리시간 0.031초

철도차량 현가특성의 최적설계에 관한 연구 (A Study on the Optimum Design of Rail Vehicle Suspension Characteristics)

  • 조동현;임진수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, optimum design methodology for rail vehicle suspension characteristics is suggested. Three parameters, primary lateral/longitunal stiffness and secondary lateral stiffness, are selected as design parameters. critical speed, suspension stroke trade-off and derailment coefficient are selectee as performance constraints. The optimum parameters to maximize ride quality are evaluated under the constraints. Steady-state curiving model to be able to evaluate derailment coefficient is developed. The combined design procedure is developed to evaluate Three parameters at the same time.

  • PDF

도시형 자기부상열차의 차체 및 대차프레임 하중시험방법 (Load Test Method of Vehicle Body and Bogie Frame for Urban Maglev Vehicle)

  • 한정우;김재동;허영철;한성욱;김범수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.924-930
    • /
    • 2011
  • Maglev vehicle has two parts a vehicle body and a series of bogies. The vehicle body is connected through a pneumatic suspension on the bogie frame operating loads, vehicle weight and passengers, repeatedly during the service life. The bogie frame plays an important role in sustaining the weight of the vehicle body and controlling the magnets in the correct alignment to meet requirements of stable running on railway. It is also subjected to the levitation and guidance force and propulsion force generated by electromagnets and linear induction motor (LIM) respectively. To guarantee a vehicle system, it is necessary to identify a load test method with proper loads that the vehicle is expected to experience while in service. In this paper, a test method was proposed to verify the structural safety of vehicle body and bogie frame that are applied to an EMS(electromagnetic suspension)-type urban Maglev vehicle considering in case of not only running on the ground but also levitated running.

  • PDF

도시철도 차량의 동적거동을 고려한 차량한계 해석 (Analysis of Vehicle Limit Considering the Dynamic Behavior for an Urban Train)

  • 박찬경;김영국;배대성
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.527-533
    • /
    • 2002
  • A railway vehicle should be satisfied with the safety criteria and ride comfort of passengers. A bogie of railway vehicle Is composed of many suspension components, such as springs, dampers and etc.. that have an influence on the dynamic behavior of the train wish the wheel/rail profiles and track geometries. Therefore, it Is necessary for engineers to check the Interference between vehicle limit and construction limit with considering the vehicle's behavior, because when the vehicle is running on curved track, it should be have enough clearance from infrastructure for safely, spacially In a subway system. This paper explains the effective method of analysis for vehicle limit considering the vehicle dynamic behavior and reviews the problem of vehicle limit for the Korean Standard Urban Train. The results show that the vehicle limit is over the construction limit when the Korean Standard Urban Train runs on the curved track with 180 m radius of curve.

틸팅 열차의 현가장치 최적화를 위한 민감도 분석 (Sensitivity analysis for optimizing the suspension system of the tilting train)

  • 김정범;박태원;윤지원;김남포;김영모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2151-2155
    • /
    • 2008
  • The tilting train express (TTX) is able to tilt its body toward to the center of the turning radius on curved railways. TTX can travel at higher speed than the existing normal railway vehicles due to the tilting mechanism decreasing centrifugal force. Also, a new suspension system is required for TTX which has proper stiffness constants and damping ratios because it has different suspension characteristics with the others. Therefore, the suspension systems need to be optimized to maximize dynamic characteristic of the railway vehicle. To optimize the dynamic characteristics of TTX, sensitivity analysis should be onde to identify design variables. In this paper, Design of Experiments(DOE) is used for the sensitivity analysis of TTX.

  • PDF

철도차량용 능동형 현가 시스템 설계에 대한 연구 (The study for Design of Active suspension system for Railway Vehicle)

  • 이남진;김철근;김진태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.369-374
    • /
    • 2004
  • Nowadays, the more speedy and functional railway vehicles are required by customers, the more broad boundary conitions of train's running are present. At this condtion, it is difficult for the traditional concept of suspension system which has the constant characteristics dependant on the running condition to meet the advenced requirements such as high ride quality. So, the active suspension should be designed to supplied the optimized suspensnion condition actively and to perform the optimal ride quality on the irregula running condition such as on the enterance or exitance of the tunnel or on the crossing the high speed train each others. On this study, the train dynamic model, integration of active suspension system, and the control logic would be proposed, and the advanced performace of train would be shown though the simulation tests.

  • PDF

MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰 (Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

협궤 차량용 준능동형 현가 시스템 설계 (Design of Semi-Active suspension system for Railway Vehicle with narrow gauge)

  • 이남진;김철근;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.473-478
    • /
    • 2005
  • Active suspension system improves ride quality with optimized suspension force, generated by electric, hydrolic or pneumatic power and controlled by micro-processor under various operation condition of train, while Semi-Active susepsion system provides optimized and controlled characteristics of suspensions such as damping coefficient without external energy. The benefits fo Semi-Active suspension are no required power source and to be made compact with lower cost. Train with narrow gauge could be more unstable than one for normal or wide gauge, and it could be more vibrated than others one by external force such as aerodynamic force and track irregularity. So, the reduced ride quality could be improved with appling with Semi-active suspension system. In this report, the Semi-Active suspension system for narrow gauge train shall be proposed and to prepare the Roller Rig test of this train, integration of system, development of control algorithm and confirmation of its performance with simulation tool would be taken.

  • PDF

Modeling the Calculation of Lateral Accelerations in Railway Vehicles as a Tool of Alignment Design

  • Nasarre, J.;Cuadrado, M.;Requejo, P.Gonzalez;Romo, E.;Zamorano, C.
    • International Journal of Railway
    • /
    • 제2권3호
    • /
    • pp.118-123
    • /
    • 2009
  • Railway track alignment Standards set a minimum lenght value for straight and circular alignments (art. 5.2.9.), in order to ensure passenger ride comfort in railway vehicles of which dynamic oscillations will thus have to be limited. The transitions between alignments can cause abrupt changes (usually called discontinuities or singular points of the alignment) of curvature, of rate of change of curvature or of rate of change of cant. A passenger is likely to experience effects due to the excitation of the elastic suspension of the vehicle which generates oscillations that are damped as the vehicle moves away from the singularity. The amplitude of these oscillations should be adequately attenuated by the damping of the suspension system within the interval between two successive singular points, especially to avoid resonances. Therefore minimum lengths between two successive singular points are stated in alignment standards. Nevertheless, these nonnative values can be overly conservative in some cases. As an alternative, track alignment designers could try to assess how much the excitation has been attenuated between two successive singular points and thus assess at which point a new singularity may be present without affecting ride comfort. Although such assessment can be made with commercial SW packages which simulate the dynamic behavior of a vehicle considered as a set of rigid bodies interconnected with elastic elements simulating the suspension systems (such as SIMPACK, ADAMS or VAMPIRE), a simplified and user-friendly computation method (based upon the analytical solution of differential equations governing the phenomenon) is made available in this paper to track design engineers, not always used to working with full dynamic models.

  • PDF

도시철도 차량 차륜 플랜지의 마모패턴에 관한 연구 (A Study On Wear Pattern of Wheel Flange for Urban Railway Vehicle)

  • 노학락;맹희영;권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.71-77
    • /
    • 2007
  • The surface of railway wheel tread in wheel-rail system can not be free from wear because of various circumstance such as railway condition, maintenance condition, weather condition, characteristics of wheel surface's geometrical shape, and vehicle suspension's structural characteristics etc. Therefore, the research on wear reduction and maintenance method are very important to ensure the safety of railway vehicle, to improve car comfort and to decrease maintenance cost. In this study, the wear rates of railway wheel have been periodically measured in terms of the running distance of Electrical Multiple Unit which have been currently operated and the microstructure transformation of wheel tread using replication method have been performed. The results show that the relations between the flange wear and tread microstructure are depended on running distance and it will supply basic data on wheel maintenance.

  • PDF

The Design of the Feedback Control System of Electromagnetic Suspension Using Kalman Filter

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.93-96
    • /
    • 2011
  • The basic element of the EMS suspension is the electromagnet system, which suspends the vehicle without contact by attracting forces to the rails at the guideway. The suspension of a vehicle by attractive magnetic forces is inherently unstable and consequently it is continuously adjusted by the strength of the suspending electromagnet from rail irregularity and bending of the guideway. In order to improve reliable tracking, it needs to get feedback signals without measurement delay time. In this paper the concept of feedback control system with Kalman Filter in EMS is proposed. The input signals in the feedback control system are an air-gap and an acceleration signal. The air-gap signal with noise from the gap sensor is transformed to the filtered air-gap signal y without measurement delay time by using Kalman Filter. The filtered air-gap signal is transformed to a relative velocity and a relative acceleration signal. Then it multiplies these values by gain matrix in order to get the actuator's reference voltage value. The simulation results show that the dynamic responses of the suspension system can be improved by reducing the influence of measurement delay time of air-gap signals.

  • PDF