• Title/Summary/Keyword: Railway Transportation

Search Result 1,335, Processing Time 0.025 seconds

Evaluating Transport Indices for A Decision on the Level of Introducing Bimodal TRAM System (신교통 바이모달트램 시스템 도입수준 결정을 위한 지표 평가)

  • Choi, Myoung-Hun;Eom, Jin-Ki;Lee, Jun;Sung, Myoung-Joon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.762-768
    • /
    • 2010
  • The Bimodal Tram being developed in Korea is a new transit system that provides both benefits of rail and bus systems in terms of accessibility and fixed time schedule. The Bimodal Tram is expected to take an important role of transit system in Korea under the national strategy of transportation system such as 'Low Carbon and Green Growth' for the next generation. This study does define the key indices considered for a decision of introducing the Bimodal Tram system and develop a finalized index, BSI(Bimodal Score for Introduction), showing the level of Bimodal Tram system introduced at a city level. The transport/transit system varies depending on cities with respect to demographic characteristics, travel patterns, financial capabilities, etc. This study will help any cities where transport agencies are trying to introduce the Bimodal Tram as a new transit system.

  • PDF

Establishment on management system for greenhouse gas emission of Railroad (철도교통부문 온실가스배출 관리체계 구축방안에 관한 연구)

  • Kim, Yong-Ki;Lee, Jae-Young;Lee, Cheul-Gyu;Lee, Young-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2058-2063
    • /
    • 2010
  • United Nations Framework Convention on Climate Change(UNFCCC) is one of the international environmental convention with the goal of stabilizing Greenhouse Gas(GHG) concent in the atmosphere and preventing potentially dangerous change in the earth's climate. The purpose of this convention is to reduce fossil fuel consumption and to prevent GHG emission. The Republic of Korea was one of the Annex-II parties submitted its national communication to the UNFCCC. As a developing county, there is no GHG emission reduction commitments made by South Korea during first commitment period(2008~2012). On the contrary, South Korea' status as an OECD member, joining in 1996, ranks 6th in GHG emission. Furthermore the rate of increase of GHG is first among OECD countries in year 2005. As a result, Korea will probably be incorporated into Annex-I in second commitment period (after 2013). So, Korea government established and announced Voluntary GHG Reduction scheme to reduce emissions of 4%(accounting for 30% reduction base on Business As Usual) from the 2005 level by the year 2020 for mitigation of reduction duty impact. In specific case of Korea, transportation section occupied almost 21% of total energy consumption and nearly 17% of total GHG emission at 2005, so systematic emission management is required. To do so, in this research, we focus on systematic way of GHG management system to handle GHG reduction duties in Railroad section.

  • PDF

Study of the structure and method of high efficiency water cooling system for monorail propulsion system (모노레일 추진시스템용 고효율 수냉식 냉각구조 및 방법에 관한 연구)

  • Ko, Hyung-Keun;Park, Tae-Hong;Song, Min-Su;On, Sek-Jin;Park, Jin-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.151-156
    • /
    • 2010
  • Monorail, with the cutting edge technology from EMU system, is small to medium sized transportation solution with bus size capacity, and one of key factors is to minimize size and weight. The Wolmi urban tour monorail, which is a center guide type first ever introduced in the world, is also consists minimizing size and weight of the propulsion system (inverter and motor), which generates considerable amount of heat. This study presents a solution of the structure and method of water cooling system of minimize the size and weight of high efficiency propulsion system, and an effective control method for energy saving.

  • PDF

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

The Regional Economic Impacts of Taiwan High Speed Rail

  • Huang, Hank C.C.;Hsu, Tao Hsin;Lin, Cynthia M.T.
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1896-1912
    • /
    • 2007
  • Starting her business operation on January 5 2007, Taiwan High Speed Rail (THSR) shapes a new time-space frame for Taiwan western corridor, where more than 90% of national population lives around and more than 95% gross domestic product created from. Comparing with the four-hour traveling time by highway before 2007, THSR reduces the time required to one and half hours from Taipei to Kaohsiung. It will not only benefit the communication along the island from north to south, but also change the location advantages/disadvantages for all cities in these regions. Therefore, this paper establishes a spatial computable general equilibrium model (SCGE Model) to simulate the economic effect of High Speed Rail (HSR). This SCGE model divides Taiwan economy into fifteen geographic regions and thirteen industries. Each region has three sectors: household sector, transportation sector, and industries sector. Following the behavior function of economic theories, the general equilibrium can be achieved simultaneously. Thus, gross regional product (GRP), capital formation, employment income and welfare/utility level can be all observed by calculating the different economic result between cases with-/ without-HSR. Besides, this model presents the social welfare benefit from HSR operation, the polarization phenomenon among regions and within certain region, unbalance distribution of welfare along the HSR line, and industries development divergence among regions etc. These major findings should be useful for regional development policy making.

  • PDF

Prediction of Lane Flooding on a Model Site for Rainfall Safety of Rubber-tired Tram (바이모달 트램 모의운행지역에서의 강우에 대한 노선침수 예측)

  • Park, Young-Kon;Yoon, Hee-Taek;Lim, Kyoung-Jae;Kim, Jong-Gun;Park, Youn-Shik;Kim, Tae-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1209-1212
    • /
    • 2007
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM(Storm Water Management Model) engine and Web technology will be an effective tool in securing safety in operating rubber-tired transportation system. In this study, the study area, located in Chuncheon, Kangwon province, was selected to evaluate the applicability of the SWMM model in forecasting urban flooding due to surcharges in sewer system The catchment are 21.10 ha in size and the average slope is 2% in lower flat areas. Information of subcatchment, conjunctions, and conduits was used as the SWMM interface to model surface runoff generation, water distribution through the sewer system and amount of water overflow. Through this study, the applicability of the SWMM for urban flooding forecasting was investigated and probability distribution of storm events module was developed to facilitate urban flooding prediction with forecasted rainfall amounts. In addition, this result can be used to the establishment of disaster management system for rainfall safety of rubber-tired tram in the future.

  • PDF

Implementation & Application of Instrumentation System on Performance Evaluation for Korea-Radio Train Control System (통신기반 열차제어시스템 성능평가용 계측시스템 구현 및 적용)

  • Lee, Jae-Ho;Lee, Kang-Mi;Park, Pyoung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1777-1783
    • /
    • 2013
  • This study aims to implement an instrumentation system measuring and analysing real-time data of information flow between respective subunits composing train control system as the performance evaluation method for wireless communication based urban railway train control system under development for a Korean model. It analyses system functional requirements regarding subsystems composing wireless communication based train control system and test items for functions presented in each specification and examines data and measurement point for measuring according to test items in order to implement an instrumentation system. And, it clearly defines requirements of an instrumentation system to avoid malfunction or error in operation of train control system. It reviews data processing method and display method for effective analysis of data flow between respective subunits with measured data, designs and makes an instrumentation system. Ultimately, it applies to a performance test of train control system and makes sure an instrumentation system in normal working order.

Development of non-destructive method of detecting steel bars corrosion in bridge decks

  • Sadeghi, Javad;Rezvani, Farshad Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.615-627
    • /
    • 2013
  • One of the most common defects in reinforced concrete bridge decks is corrosion of steel reinforcing bars. This invisible defect reduces the deck stiffness and affects the bridge's serviceability. Regular monitoring of the bridge is required to detect and control this type of damage and in turn, minimize repair costs. Because the corrosion is hidden within the deck, this type of damage cannot be easily detected by visual inspection and therefore, an alternative damage detection technique is required. This research develops a non-destructive method for detecting reinforcing bar corrosion. Experimental modal analysis, as a non-destructive testing technique, and finite element (FE) model updating are used in this method. The location and size of corrosion in the reinforcing bars is predicted by creating a finite element model of bridge deck and updating the model characteristics to match the experimental results. The practicality and applicability of the proposed method were evaluated by applying the new technique to a two spans bridge for monitoring steel bar corrosion. It was shown that the proposed method can predict the location and size of reinforcing bars corrosion with reasonable accuracy.

Improved prestressed concrete girder with hybrid segments system

  • Yim, Hong Jae;Yang, Jun Mo;Kim, Jin Kook
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.183-190
    • /
    • 2018
  • The prestressed concrete (PSC) technology that was first developed by Freyssinet has significantly improved over the past century in terms of materials and structural design in order to build longer, slender, and more economic structures. The application of prestressing method in structures, which is determined by the pre-tension or post-tension processes, is also affected by the surrounding conditions such as the construction site, workforce skills, and local transportation regulations. This study proposes a prestressed concrete girder design based on a hybrid segment concept. The adopted approach combines both pre-tension and post-tension methods along a simple span bridge girder. The girder was designed using newly developed 2400 MPa PS strands and 60 MPa high-strength concrete. The new concept and high strength materials allowed longer span, lower girder depth, less materials, and slender design without affecting the lateral stability of the girder. In order to validate the applicability of the proposed hybrid prestressed segments girder, a full-scale 35 m girder was fabricated, and experimental tests were performed under various fatigue and static loading conditions. The experimental results confirmed the feasibility of the proposed long-span girder as its performance meets the railway girder standards. In addition, the comparison between the measured load-displacement curve and the simulation results indicate that simulation analysis can predict the behavior of hybrid segments girders.

Shape Optimization of a Bogie frame for the Reduction of its Weight (고속 화차용 대차프레임의 경량화를 위한 최적설계)

  • Kim, Hyun-Su;Ahn, Chan-Woo;Choi, Kyung-Ho;Park, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.186-192
    • /
    • 2002
  • As industry is developed, the faster transportation of freight train is demanded. The optimum design of a structure requires the determination of economical member size and shape of a structure which will satisfy the design conditions and the functions. In this study, it is attempted to minimize the dead weight of bogie frame. From the numerical results in the shape and size optimization of the bogie frame, it is known that the weight can be reduced up to 17.45% with the displacement, stress, first natural frequency and critical buckling-load constraints. The first natural frequency and the critical buckling load of the optimized model is larger than that of the lowest design value. Stress and displacement conditions are also satisfied within the design conditions. From the results, the optimal model is stable and useful for the improvement of railway carriages.