• Title/Summary/Keyword: Railroad Trains

Search Result 385, Processing Time 0.025 seconds

Arrival Delay Estimation in Bottleneck Section of Gyeongbu Line (철도선로용량 부족에 따른 지체발생 연구 - 경부선 서울~금천구청 구간을 대상으로)

  • Lee, Jang-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.374-390
    • /
    • 2015
  • This research shows the relationship between the number of trains and the probability of trains with arrival delay and suggests way to estimate the benefits of improved punctuality in a bottleneck section of the Gyeongbu Line. The arrival delays of high-speed and conventional trains were estimated using the train operation data of KORAIL. Linear regression models for the probability of trains with arrival delay by train type are presented in this paper. The probabilities of trains with arrival delay were more affected by the number of conventional trains than by the number of high-speed rail trains. For the empirical analysis, a project for increasing the capacity in the Seoul~Geumcheongu office section was tested. The benefits of the improved punctuality were estimated to be 4.2~4.5 billion Korean won every year. This research has some limitations but it can help evaluate more precisely the feasibility of the project of increasing the capacity in bottleneck sections.

A Study on the Safety Braking Distance in ATP System (ATP시스템의 안전제동거리에 대한 연구)

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Jong-Soo;Yun, Yu-Boem;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.132-139
    • /
    • 2011
  • ATP(Automatic Train Protection) system in railroad signalling system is on-board signalling system which is controlled by train control information such as location and speed of trains. Safety is ensured by transmitting the train control information between on-board and wayside device in the ATP system. When an engineer disregards the speed limit on a tachometer, the train is automatically stopped by the on-board device. Recently, the studies of increasing speed of the train have been developed. Eurobalise in ERTMS/ETCS system is used in case that speed of trains is up to 500[km/h]. A study of safety braking distance is needed by increasing the speed of train in the ATP system. Train data and track data are required to calculate the safety braking distance. The train data includes formations of trains, length of trains, service brake and emergency brake etc. Also, the track data includes slope of track, curve of track, length of track, speed limit etc. In this paper, the speed profile is computed by analyzing the train and track data in the ATP system. It is demonstrated by applying to subway line 2 in Seoulmetro through the on-site test.

  • PDF

Structural Analysis of Locking Parts in the Gauge -Adjustable Wheelset (궤간 가변 윤축의 잠금부품들에 대한 구조해석)

  • Kim, Chul-Su;Chang, Cheon-Soo;Jang, Seung-Ho;Kim, Jung-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • To reduce the cost and time of transport in Eurasian railroad networks such as TKR, TCR and TSR owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge-adjustable wheelset system to adapt easily to these gauges. Moreover, freight trains having the gauge-adjustable wheelsets should be passing various curved tracks in railroad networks. Therefore, to assure the safety of the gauge-adjustment whellset system, it is necessary to evaluate integrity of locking parts in the system using stress analysis. This study is focused on analyzing contact stress of locking parts by using FEA(finite element analysis) simulation during the gauge changeover operation and freight trains' service in the curved track, respectively.

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

Test and Analysis of Electromagnetic Compatibility in Next-Generation Train (차세대전동차 유도장애시험 및 분석)

  • Lee, Chang-Mu;Lee, Han-Min;Kim, Ju-Rak;Kim, Kil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2031-2036
    • /
    • 2011
  • To leading subway technology Advanced Urban Transit System is developed by national research and development. Next-generation trains equipped with direct driving permanent magnet traction motor and individually controlled propulsion system. Electromagnetic properties of the Next-Generation Train from four perspectives will be discussed. The first is closely related to human hazards that affect the 60Hz low frequency electromagnetic field. The Second is inductive noise that affect railroad signal system. The third is conductive noise that affect communication line near railroad. The 4th is radiation noise that may affect electronic equipment near the railroad tracks.

  • PDF

Effect of power line disturbance on loss of contact between contact wire and pantograph (전차선-팬터그래프 사이의 이선현상에 따른 전원외란이 보조전원장치에 미치는 영향)

  • Kim, Jae-Moon;Kim, Yang-Soo;Jang, Jin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.179-181
    • /
    • 2008
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

Tunnel Blast Design for Earthquake Accelerometer Installed Rapid Transit Railroads (지진가속도계가 설치된 고속철도 터널 인근의 발파설계)

  • Lee, Jong-Woo;Kim, Nam-Soo;Jung, Sang-Jun;Park, Chi-Myeon
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • KoRail establishes "Guideline for earthquake acceleration measuring instrument and operation." and applies the management of the rapid transit railroad. KoRail manages the trains by train driving patterns subjected to the train operating know-how for the safety against the earthquake hazards. This paper introduces the case studies on bench blast and tunnel blast designs considering a rapid transit railroad.

A study on the reduction effects of journey time as operating Korean tilting train (틸팅열차 투입에 따른 시간단축 효과 검토에 관한 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Song, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1121-1123
    • /
    • 2006
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. This paper explains the reduction effects of journey time with the Korean tilting train. The Korean Tilting Train express (TTX) project has been carried out to develop alt the core technologies related to tilting train and infra-technology to provide high speed inter-city service with the speed of 180 km/h as well as maintenance-free technology for conventional railway system. In order to simulate we considered 5 conventional railway. As a results of simulation, we found out the tilting train has very high efficiency(reduction rate 20-30%).

  • PDF

The Study of Tilting System for EMU Tilting Vehicle (틸팅전동차용 틸팅시스템에 관한 연구)

  • Lee, Su-Gil;Han, Seong-Ho;Song, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1109-1111
    • /
    • 2006
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF