• 제목/요약/키워드: Rail-Wheel Contact

검색결과 224건 처리시간 0.024초

철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석- (A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail-)

  • 김재철;구동회
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

건식 및 수분조건에 따른 차륜/레일의 마모특성 평가 (Wear Characteristics of Wheel/Rail Material under Dry and Wet Conditions)

  • 서정원;권석진;전현규;이동형
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.541-549
    • /
    • 2016
  • Rolling contact fatigue and wear on rails are inevitable in railway operations due to excessive wheel-rail contact stress. The wear is influenced by vehicle speed, contact pressure, environmental conditions, and many other factors. Speeding on a curved track causes many problems such as wear on the gauge of the rail and rolling contact fatigue. Managing environmental conditions can reduce problems on the wheel and rail interface. In this study, the wear characteristics of wheel and rail materials were investigated by twin-disc testing using various parameters. The results of the wear test indicated that the wear rate under dry conditions was larger than that under wet conditions. We found that contact fatigue damage occurred on the rail in dry conditions, however, the surface of the specimen under water remained smooth. Also, the friction coefficient in dry conditions was larger than in wet conditions.

차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석 (A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 윤축 동역학 해석은 철도차량 동역학 해석의 정밀도를 결정하는 핵심 요소이다. 본 연구에서는 정밀한 3차원 차륜-레일 접촉 해석을 윤축의 강체 운동 방정식에 적용하는 방법으로 3차원 윤축 동역학 해석을 수행하였다. 곡선 주행시 플랜지 접촉에 의해 차륜-레일 2점 접촉이 발생할 때 윤축의 동역학 해석이 가능한 수치해석 절차를 개발하였다. 윤축의 구속조건식과 강체 동역학 방정식을 Runge-Kutta 방법을 이용하여 수치적분을 수행하였다. 제안된 윤축 동역학 해석 결과는 VI-RAIL을 이용한 해석결과와 비교 분석하여 타당성을 검증하였다.

차륜/레일간의 접촉력 계산을 위한 접촉점 해석 알고리즘 (Contact Point Analysis for Wheel/Rail Contact Force Calculation)

  • 박정훈;임진수;황요하;김창호
    • 한국철도학회논문집
    • /
    • 제2권3호
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, descibed was the derived algorithm for calculating contact point between wheel and rail and the developed method for rail modeling. The proposed methods use travelling distance to represent rail center line position vector and rail orientation with respect to Newtonian reference frame. The methods call be easily used ill multibody dynamic analysis. Two numerical examples are shown to verify the validity of the proposed methods.

  • PDF

철도차량용 휠과 레일의 형상설계에 관한 연구 (A Study on the Shape Design of Wheel-Rail for Rolling Stock)

  • 성기득;양원호;조명래;허성필
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2033-2039
    • /
    • 1999
  • One of the main causes of severe wear or crack initiation in wheel and rail is the contact stress due to wheel-rail contact. In this paper, the shape design based on more reasonable contact stress analysis rather than a general Hertzian contact theory is investigated in order to reduce the contact stress. The optimal design is performed using the simple 2-D finite element model and its results are verified by 3-D finite element analysis.

도시철도 차륜의 접촉피로 초기수명 평가 (Estimation of Contact Fatigue Initiation Lifetime of an Urban Railway Wheel)

  • 안종곤;유인동;권석진;김호경
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 2012
  • Rolling contact fatigue of an urban railway wheel was analysed during its rolling. A FEM analysis was performed using a 3D modelling of rail and wheel, considering the slope of the rail and nonlinear isotropic and kinematic hardening behavior of the rail and the wheel. The maximum von-Mises stress and contact pressure between the rail and wheel were 656.9 MPa and 1111.4 MPa, respectively, under axial load of 85 kN with friction coefficient of 0. The fatigue initiation life prediction relationships by strain-lifetime (${\varepsilon}$-N) and Smith-Watson-Topper method were drawn for the wheel steel as follows: $N_i=7.35{\times}10^6{\times}SWT^{-3.56}$ and $N_i=5.41{\times}10^{-9}{\times}(\frac{{\Delta}{\varepsilon}}{2})^{-5.77}$. The fatigue lifetimes of the wheel due to rolling contact were determined to be infinite by ${\varepsilon}$-N and SWT methods.

차륜/레일에 의한 전동음에 관한 연구 (A Study on Wheel/Rail Rolling Noise)

  • 김재철;유원희;문경호;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.163-171
    • /
    • 1999
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel/rail surface on tangent tack in the absence of discontinuities, such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are transmitted through the wheel and rail structures, exciting resonances of the wheel and travelling waves ill tile rail. Then these vibrations radiate noise to the wayside. In this paper, we predict the rolling noise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our predication these results show in good agreement between 500 ㎐ and 3150㎐.

  • PDF

차륜과 레일 접촉위치의 수치해석에 관한 연구 (A Study on Numerical Analysis of Wheel-rail Contact Points)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.236-242
    • /
    • 2009
  • 본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.

일반적인 접촉특성을 이용한 휠/레일 접촉모듈 프로그램 개발에 관한 연구 (A study on the development of wheel-rail contact module using general contact mechanism)

  • 박찬경;배대성;조희재;조영걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.204-209
    • /
    • 2003
  • The railway vehicle is composed of many suspension components, such as 1st springs, 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and its contact mechanism affect the dynamic behavior of high speed train. but these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement and it do not exact dynamic analysis for high speed train. there is a need to develop a new wheel/rail contact module for dynamic behavior and wheelset model is divided motor box, wheel box and wheel body. This wheel is moved by motor box and constrained by joint. It is almost same a train and its result is more exactly.

  • PDF

레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구 (An Analytic Study on the Contact Stress and Thermal Stress of Rails)

  • 구병춘;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF