• Title/Summary/Keyword: Rail vibration

Search Result 417, Processing Time 0.038 seconds

Expansion Joints for Vibration and Noise Test (신축이음장치의 진동소음 실험)

  • Kwark, Jong-Won;Kim, Young-Jin;Lee, Jung-Woo;Choi, Eun-Suk;Chin, Won-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.513-516
    • /
    • 2004
  • Consistency in design, manufacture, installation and performance test of expansion joints is insufficient for guarantee of reliability because they are imported from various foreign countries as America, Japan and Europe. In addition to that, the regulations or codes of expansion joint should be revised and established for levels of vibration and noise generated from riding vehicles especially. Regulation on the noise neighboring traffic roads is established by ministry of environment. Therefore, Field tests on the vibration and the noise at expansion Joints, especially rail-type and finger-type joints which are typical ones in bridge with short or middle span, are performed and performance of expansion joints are analyzed. And so, the results of the investigation will be utilized as basic data for the regulation on the vibration and the noise.

  • PDF

Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway (구름접촉피로시험을 통한 고속철도 레일연마량 분석)

  • Chang, Ki-Sung;Sung, Deok-Yong;Park, Yong-Gul;Choi, Jin-Yu;Lee, Dong-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF

A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment (실물실험을 통한 PC-Slab합성 판형교의 성능비교연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Kim, Yung-Guk;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.

A Study on the Performance Characteristic of Common Rail High Pressure Pump (커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.