• Title/Summary/Keyword: Rail traction system

Search Result 81, Processing Time 0.032 seconds

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Analysis on Voltage and Cost of Substation with PWM Rectifier in DC Traction Power Supply System (PWM 정류기를 적용한 직류급전시스템의 전압강하 및 비용 평가)

  • Kim, Joorak;Park, Kijun;Park, Chang-Reung;Choo, Eun-Sang;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.640-645
    • /
    • 2015
  • Near surface transit system has should be constructed as installation cost of light rail transit with elevated track. So, distance between two substations is longer than conventional system. The long feeding distance results in severe voltage drop. This paper proposes a PWM rectifier instead of diode rectifier. The PWM rectifier has some advantages. This is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper analyse on improved voltage profile and cost of substation with PWM rectifier. The analysis of voltage profile use PSIM, and the installation cost of substation with PWM rectifier is compared to substation with diode rectifier.

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Modeling for the Analysis of Rail Potential in the DC Railway Power System (직류전기철도 급전시스템에서 레일전위 해석을 위한 모델링)

  • Cho, Woong-Ki;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.138-146
    • /
    • 2010
  • DC railway power supply system generally uses the running rails as negative-polarity return conductor for traction load current, and the induced rail potential and stay current cause serious problems to any electrified matter in the underground and also safety problems to human body. This paper presents a new algorithm for the analysis of the rail potential and the stray current in DC railway power system operated under independent/parallel power feeding mode. The effect of load current fluctuation during train operation is also calculated by using TPS(Train Performance Simulation) program to analysis the variation of the railway potential and stray current along railway track. Simulation program is developed based on the proposed algorithm and case studies are provided.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

An Improved Central 60° Synchronous Modulation for High Transient Performance with PMSM Stator Flux Control Used in Urban Rail Transit Systems

  • Fang, Xiaochun;Lin, Fei;Yang, Zhongping
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.542-552
    • /
    • 2016
  • Central 60° synchronous modulation is an easy pulse-width modulation (PWM) method to implement for the traction inverters of urban rail trains at a very low switching frequency. Unfortunately, its switching patterns are determined by a Fourier analysis of assumed steady-state voltages. As a result, its transient responses are not very good with over-currents and high instantaneous torque pulses. In the proposed solution, the switching patterns of the conventional central 60° modulation are modified according to the dynamic error between the target and actual stator flux. Then, the specific trajectory of the stator flux and current vector can be guaranteed, which leads to better system transients. In addition, stator flux control is introduced to get smooth mode switching between the central 60° modulation and the other PWMs in this paper. A detailed flow chart of the control signal transmission is given. The target flux is obtained by an integral of the target voltage. The actual PMSM flux is estimated by a minimum order flux state observer based on the extended flux model. Based on a two-level inverter model, improved rules in the α-β stationary coordinate system and equations of the switching patterns amendment are proposed. The proposed method is verified by simulation and experimental results.

System Design Considering the required performance of the Levitation Control in Maglev (자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계)

  • Jo, Jeong-Min;Lee, Jong-Min;Kang, Byung-Gwan;Park, Sung-Ho;Kim, Cheol-Ho;Choi, Jong-Mook;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF

Characteristic Analysis of LIM for Magnetic Levitation Vehicle by F.E.M. (FEM을 이용한 자기부상 열차용 선형 유도전동기의 특성 해석)

  • Kim Jeong-Cheol;Lee Sang-Woo;Yoon Jong-Hack;choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.433-438
    • /
    • 2003
  • The recent operating trains including the high speed train are mostly moving system on the rail and system use the mechanical propulsion force to drive the gear and wheel by the traction motor. Advanced countries are interested in Magnetic Levitation Vehicle and they have been studying about it continuously. Thus this paper is analyzed the feature of analysis the feature for Linear Induction Motor as the propulsion equipment of Magnetic Levitation Vehicle. And the Magnetic Levitation Vehicle is being developed for the transportation system of next generation using the Finite Element Method

  • PDF