• Title/Summary/Keyword: Rail clamp

Search Result 34, Processing Time 0.022 seconds

Shape Design of the U-Type Wedge of the Rail Clamp for a Container Crane (컨테이너 크레인용 레일클램프의 U형 쐐기 형상설계)

  • Han, D.S.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.117-122
    • /
    • 2009
  • The wedge type rail clamp compresses the rails with small clamping force at first, and with large clamping force when the wind speed increases because of the wedge working. If the supporter is not installed in the rail clamp with V-type wedge when the wind speed increases more and more, the structure will occur overload which leads the structure to fracture. But in the clamp with U-type wedge the supporter is not necessary because the tangential angle of the wedge increases as the sliding distance increases. The proper shape of U-type wedge is determined by the initial clamping force and the tangential angle of the wedge. Accordingly we, first carry out the finite element analysis in order to analyze the relation between the sliding distance and the wedge angle. Next we suggest the proper shape of U-type wedge as analyze the relation between the radius of curvature and the sliding distance.

  • PDF

The Effect of Clamping Angle of a Locker on the Clamping Force of the Wedge Type Rail Clamp (Locker 의 물림각이 쐐기형 레일클램프의 압착력에 미치는 영향 평가)

  • Han D.S.;Lee S.W.;Han G.J.;Ahn C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1042-1045
    • /
    • 2005
  • The wedge type rail clamp has the operating mechanism: First, the jaw pad clamps a rail with small clamping force. Next as the wind speed increases, the clamping force of the Jaw pad Is Increased by the wedge. The initial clamping force of a jaw pad was determined by the clamping angle of a locker. In this study, we carried out the finite element analysis to evaluate the relationship between the clamping angle of a locker and the clamping force of a jaw pad with respect to the design wind speed, such as 2, 4, 6, 8, and 10m/s, we adopted the wedge type rail clamp fur 50tons class container crane with the wedge angle of $10^{\circ}$.

  • PDF

Creative Design of the Wedge Type Rail Clamp to set the Initial Clamping Force (초기압착력 설정을 위한 쐐기형 레일클램프의 창의적 설계)

  • Han, Dong-Seop;Kim, Yong;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 2007
  • The clamping force of a jaw pad is determined by the displacements of main part when two lockers are locked, after the clamping angle of a locker was set up in the wedge type rail clamp for a container crane. In this time, if the resistance of wedge frame generates due to several factors, the clamping angle of a locker to display the initial clamping force will be changed because of the reduction of displacement of extension bar. This resistance is determined by the eccentric distance between the roller and the wedge, and by the gap between the wedge frame and outer frame. In this study we measured the tensile force of both extension bar through the performance test of the prototype rail clamp in order to evaluate the effect of the resistance of wedge frame on the clamping force of the wedge type rail clamp.

  • PDF

A Study on Wedge Angles of Wedge-type Rail Clamp for Preventing Jaw from Rotating (쐐기형 레일 클램프에서 조(jaw)의 회전을 방지하기 위한 적정 쐐기각에 대한 연구)

  • Shim J. J.;Lee S. W.;Han D. S.;Park J. S.;Jeon Y. H.;Lee H.;Han G. J.;Ahn C. W.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.735-740
    • /
    • 2005
  • In this paper, we designed a wedge type rail-clamp which can protect container crane from sudden wind blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine an angle of wedge which prevent rotating of jaw and for smooth operation when wind blows. Therefore, this paper suggest a process to decide an angle of wedge within proper range obtained by experimental analysis as well as FEA of the wedge type rail clamp. A model with $6^{\circ}$ wedge angle is the most proper model to use in rail clamp bemuse it generated satisfactory clamping force and rotating angle underdesign specification.

Evaluation on Damage Weak Part of Rail Fastening System for Concrete Tracks (콘크리트 궤도용 탄성레일체결장치 손상취약부 분석)

  • Choi, Jung-Youl;Kim, Sang-Jin;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.265-270
    • /
    • 2022
  • The purpose of this study is to derive the damage weak part of the elastic rail fastening system for concrete tracks (System 300-1). In the concrete tracks, the elastic rail fastening system sticks the rail and the sleeper and reacts all the time when the train is running. Among the components of the rail fastening system, the resilience pad and tension clamp were fatigue members and were constantly deformed in response to compressive and uplift forces. In this study, the residual deformation characteristics of the tension clamp according to the period of use were analyzed using by specimens taken on site in the same section for 6, 11, and 16 years on the serviced urban transit. In addition, the damage mechanisms for each component were derived based on finite element analysis. As a result of the numerical analysis, the stress (strain) of each part of the tension clamp according to the external force from the applied clamping force was analyzed to derive the damaged weak part of the tension clamp.

Behavior of Tension Clamp in Rail Fastening System (레일 체결장치 텐션클램프의 거동)

  • Choi, Shin-Hyung;Park, Beom-Ho;Yun, Kyung-Min;Bae, Hyun-Ung;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8812-8819
    • /
    • 2015
  • In a situation in which importance of rail fastening system is growing with increasing the construction of concrete track, an accident of tension clamp(the component of rail fastening system) breaking has been recently occurred. This results from various factors such as field condition, operating agency, running condition, traffic frequency and so on. Thus, the study for the behavior of tension clamp is required. In this paper, an experiment and finite element analysis(FEA) have been performed to analyse the mechanical behavior of tension clamp. The stress and displacement of tension clamp have been analyzed as the clamping force through a laboratory test, and they were compared with FEA results. Furthermore, the stress and displacement of the tension clamp are derived from train load condition applying the verified model, and the fatigue vulnerability of the tension clamp is identified through stress analysis.

A Study on Durability Standard Specification of the Dropper Clamp of Catenary for High Speed Railway (고속철도 전차선로 드로퍼 클램프 내구성 기준 정립에 관한 연구)

  • Oh, Wan-Shik;Yang, In-Dong;Park, Byung-Gon;Hong, Seok-Jin;Kim, Seong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1431-1436
    • /
    • 2017
  • The high-speed railway of catenary system, supplies a stable electric power supply to the train by satisfying the special conditions between pantograph and trolley wire, which operates more than 250km/h mutually sliding and feeding electric lines. According to Korean Railway Standard KRS PW 0026-13 (R), the standard for the grip strength of the dropper clamp in conventional line is established, but the high-speed railway line is not yet. When the grip strength of the dropper clamp is detached from the catenary line of the high-speed railway line, various problems may occur, such as damage to the pantograph due to the collision and arcing. In this paper, it is expected to be used as a basic data for establishing the durability criteria of the high-speed railway dropper clamp by verifying the dropper clamp on the Gyeong-bu and Honam high-speed line.

Design of the Various Capacity Wedge-type Rail Clamp for a Quay crane According to the Design Wind Speed Criteria Change (설계 풍속 상향 조정에 따른 Quay crane용 제용량 쐐기형 레일 클램프 설계)

  • Lee J.M.;Han G.J.;Shim J.J.;Han D.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1626-1629
    • /
    • 2005
  • Recently many countries have concentrated their effort on the port automation, in order to be the Hub-port, that the Ultra Large Container Ship could come alongside the Quay, in their region. As the magnitude of the container ship increase, that of the Quay crane increases from 50ton-class to 61ton-class more and more. The wind speed criteria to design the structures used in the port was upgraded from 20m/s to 40m/s due to change of the weather condition. Our laboratory could have the ability to design the wedge type rail clamp for 50ton-class Quay crane in 30m/s wind speed. Accordingly we analyzed the load condition of the Quay crane about 40m/s wind speed upgraded from 20m/s and designed the wedge type rail clamp for 50ton and 61ton-class Quay crane.

  • PDF

Influence of Initial Clamping Force of Tension Clamp on Performance of Elastic Rail Fastening System (텐션클램프의 초기 체결력이 탄성레일체결장치의 성능에 미치는 영향)

  • Lee, Dong Wook;Choi, Jung Youl;Baik, Chan Ho;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1243-1251
    • /
    • 2013
  • The purpose of this study is to investigate the influence of initial clamping force of tension clamp on the performance of an elastic rail fastening system used in sharp curve track. In this study, the initial clamping force and the increasing lateral wheel loads were conducted in the analytical and experimental study, i.e., finite element analysis, laboratory and field test. Using the analytical and experimental results, the performance of the tension clamp was investigated. It was found that the stress of tension clamp depends on the initial clamping force. Therefore the initial clamping force appeared to directly affect the compression stress of the tension clamp. It was found that the compression stress of tension clamp was transferred to the tensile stress by applied the lateral wheel load in service sharp curve track. Further, it was concluded that the initial clamping force was applied on the strengthening force for the tension clamp and then the appropriate initial clamping force was important to ensure a stable performance and long term endurance of tension clamp.

Relationship between the Initial Clamping Force and the Sliding Distance of the Rail Clamp according to the Wedge Angle (쐐기각에 따른 레일클램프의 초기 압착력과 밀림거리 사이의 관계)

  • Han D.S.;Lee S.W.;Kwon S.K.;Han G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.379-380
    • /
    • 2006
  • In this study we dealt with the relationship between the initial clamping force and the sliding distance in the wedge type rail clamp. The sliding distance is determined by the wedge angle and the initial clamping force. In order to derive the relation formula between the wedge angle and the sliding distance, we ad opt 5-kinds of the wedge angle, such as 2, 4, 6, 8, $10^{\circ}$. And then we analyze the effect of the initial clamping force on the sliding distance.

  • PDF