• 제목/요약/키워드: Radiomics features

검색결과 28건 처리시간 0.025초

유방암에서 자기공명영상 근거 영상표현형과 유전자 발현 프로파일 근거 위험도의 관계 (Correlation between MR Image-Based Radiomics Features and Risk Scores Associated with Gene Expression Profiles in Breast Cancer)

  • 김가람;구유진;김준호;김은경
    • 대한영상의학회지
    • /
    • 제81권3호
    • /
    • pp.632-643
    • /
    • 2020
  • 목적 자기공명영상 근거 영상표현형과 생체분자학적 아형, 유전자 발현 프로파일 근거 위험도 등 유방암 유전체 특징의 관계를 분석하고자 하였다. 대상과 방법 The Cancer Genome Atlas와 and the Cancer Imaging Archive에 공개된 자료를 이용하였다. 122개의 유방암의 자기공명영상에서 영상표현형이 추출되었다. 유전자 발현 프로파일에 따라 PAM50아형을 분류하고 위험도를 지정하였다. 영상표현형과 생체분자학적 특징의 관계를 분석하였다. 예측모델을 알아보기 위해 penalized generalized regression analysis를 이용하였다. 결과 PAM50아형은 maximum 2D diameter (p = 0.0189), degree of correlation (p = 0.0386), 그리고 inverse difference moment normalized (p = 0.0337)와 유의하게 관련이 있었다. 위험도 시스템 중에 GGI와 GENE70이 통계적으로 유의하게 8개의 영상표현형 특징을 서로 공유하였다(p = 0.0008~0.0492). Maximum 2D diameter가 두 위험도 시스템에서 가장 유의하게 관련있는 특징이었으나(p = 0.0139, p = 0.0008) 예측모델의 전반적인 연관 정도는 약했고 가장 높은 연관계수는 GENE70이 0.2171이었다. 결론 영상표현형 중에 maximum 2D diameter, degree of correlation, 그리고 inverse difference moment normalized가 PAM50 아형 그리고 GENE70과 같은 유전자 발현 프로파일 근거 위험도와 그 연관도는 약하였으나 유의한 관련을 보였다.

라디오믹스 기반 직장암 수술 위험도 예측을 위한 MRI 반자동 선택 바이오마커 검증 연구 (A Study on MRI Semi-Automatically Selected Biomarkers for Predicting Risk of Rectal Cancer Surgery Based on Radiomics)

  • 백영서;김영재;전영배;황태식;백정흠;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.11-18
    • /
    • 2023
  • Currently, studies to predict the risk of rectal cancer surgery select MRI image slices based on the clinical experience of surgeons. The purpose of this study is to semi-automatically select and classify 2D MRI image slides to predict the risk of rectal cancer surgery using biomarkers. The data used were retrospectively collected MRI imaging data of 50 patients who underwent laparoscopic surgery for rectal cancer at Gachon University Gil Medical Center. Expert-selected MRI image slices and non-selected slices were screened and radiomics was used to extract a total of 102 features. A total of 16 approaches were used, combining 4 classifiers and 4 feature selection methods. The combination of Random Forest and Ridge performed with a sensitivity of 0.83, a specificity of 0.88, an accuracy of 0.85, and an AUC of 0.89±0.09. Differences between expert-selected MRI image slices and non-selected slices were analyzed by extracting the top five significant features. Selected quantitative features help expedite decision making and improve efficiency in studies to predict risk of rectal cancer surgery.

Ultrafast MRI and T1 and T2 Radiomics for Predicting Invasive Components in Ductal Carcinoma in Situ Diagnosed With Percutaneous Needle Biopsy

  • Min Young Kim;Heera Yoen;Hye Ji;Sang Joon Park;Sun Mi Kim;Wonshik Han;Nariya Cho
    • Korean Journal of Radiology
    • /
    • 제24권12호
    • /
    • pp.1190-1199
    • /
    • 2023
  • Objective: This study aimed to investigate the feasibility of ultrafast magnetic resonance imaging (MRI) and radiomic features derived from breast MRI for predicting the upstaging of ductal carcinoma in situ (DCIS) diagnosed using percutaneous needle biopsy. Materials and Methods: Between August 2018 and June 2020, 95 patients with 98 DCIS lesions who underwent preoperative breast MRI, including an ultrafast sequence, and subsequent surgery were included. Four ultrafast MRI parameters were analyzed: time-to-enhancement, maximum slope (MS), area under the curve for 60 s after enhancement, and time-to-peak enhancement. One hundred and seven radiomic features were extracted for the whole tumor on the first post-contrast T1WI and T2WI using PyRadiomics. Clinicopathological characteristics, ultrafast MRI findings, and radiomic features were compared between the pure DCIS and DCIS with invasion groups. Prediction models, incorporating clinicopathological, ultrafast MRI, and radiomic features, were developed. Receiver operating characteristic curve analysis and area under the curve (AUC) were used to evaluate model performance in distinguishing between the two groups using leave-one-out cross-validation. Results: Thirty-six of the 98 lesions (36.7%) were confirmed to have invasive components after surgery. Compared to the pure DCIS group, the DCIS with invasion group had a higher nuclear grade (P < 0.001), larger mean lesion size (P = 0.038), larger mean MS (P = 0.002), and different radiomic-related characteristics, including a more extensive tumor volume; higher maximum gray-level intensity; coarser, more complex, and heterogeneous texture; and a greater concentration of high gray-level intensity. No significant differences in AUCs were found between the model incorporating nuclear grade and lesion size (0.687) and the models integrating additional ultrafast MRI and radiomic features (0.680-0.732). Conclusion: High nuclear grade, larger lesion size, larger MS, and multiple radiomic features were associated with DCIS upstaging. However, the addition of MS and radiomic features to the prediction model did not significantly improve the prediction performance.

컴퓨터 단층 촬영 영상에서의 전이성 척추 종양의 정량적 분류를 위한 라디오믹스 기반의 머신러닝 기법 (Radiomics-based Machine Learning Approach for Quantitative Classification of Spinal Metastases in Computed Tomography)

  • 이은우;임상헌;전지수;강혜원;김영재;전지영;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권3호
    • /
    • pp.71-79
    • /
    • 2021
  • Currently, the naked eyes-based diagnosis of bone metastases on CT images relies on qualitative assessment. For this reason, there is a great need for a state-of-the-art approach that can assess and follow-up the bone metastases with quantitative biomarker. Radiomics can be used as a biomarker for objective lesion assessment by extracting quantitative numerical values from digital medical images. In this study, therefore, we evaluated the clinical applicability of non-invasive and objective bone metastases computer-aided diagnosis using radiomics-based biomarkers in CT. We employed a total of 21 approaches consist of three-classifiers and seven-feature selection methods to predict bone metastases and select biomarkers. We extracted three-dimensional features from the CT that three groups consisted of osteoblastic, osteolytic, and normal-healthy vertebral bodies. For evaluation, we compared the prediction results of the classifiers with the medical staff's diagnosis results. As a result of the three-class-classification performance evaluation, we demonstrated that the combination of the random forest classifier and the sequential backward selection feature selection approach reached AUC of 0.74 on average. Moreover, we confirmed that 90-percentile, kurtosis, and energy were the features that contributed high in the classification of bone metastases in this approach. We expect that selected quantitative features will be helpful as biomarkers in improving the patient's survival and quality of life.

Radiomics를 이용한 1 cm 이상의 갑상선 유두암의 초음파 영상 분석: 림프절 전이 예측을 위한 잠재적인 바이오마커 (Radiomics Analysis of Gray-Scale Ultrasonographic Images of Papillary Thyroid Carcinoma > 1 cm: Potential Biomarker for the Prediction of Lymph Node Metastasis)

  • 정현정;한경화;이은정;윤정현;박영진;이민아;조은;곽진영
    • 대한영상의학회지
    • /
    • 제84권1호
    • /
    • pp.185-196
    • /
    • 2023
  • 목적 갑상선 유두암 환자에서 림프절 전이를 예측할 수 있는 잠재적인 바이오마커를 개발하기 위해 초음파 영상에 대한 radiomics를 조사하는 것이다. 대상과 방법 2013년 8월부터 2014년 5월까지 431명의 환자가 연구에 포함되었고 통계 소프트웨어를 사용하여 훈련 및 검증 세트로 구분되었다. 총 730개의 radiomics 특징이 자동으로 추출되었다. 훈련 데이터 세트에서 가장 예측 가능한 특징을 선택하기 위해 최소 절대 수축 및 선택 연산자가 사용되었다. 결과 Radiomics 점수는 림프절 전이와 관련이 있었다(p < 0.001). 림프절 전이는 젊은 연령(p = 0.007) 및 더 큰 종양 크기(p = 0.007)와 같은 다른 임상 변수와도 관련이 있었다. 수신자 조작 특성 곡선 하 면적 결과 값은 훈련 세트의 경우 0.687 (95% 신뢰 구간: 0.616-0.759), 검증 세트의 경우 0.650 (95% 신뢰 구간: 0.575-0.726)이었다. 결론 본 연구 결과는 초음파 영상 기반의 radiomics가 papillary thyroid carcinoma 환자에서 경부 림프절 전이를 예측하고 바이오마커로 작용할 가능성을 보여주었다.

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung;Sunwoo, Leonard
    • Investigative Magnetic Resonance Imaging
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

2D 전립선 단면 영상에서 영역 분류를 위한 라디오믹스 기반 바이오마커 검증 연구 (Radiomics-based Biomarker Validation Study for Region Classification in 2D Prostate Cross-sectional Images)

  • 박준영;김영재;김지섭;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.25-32
    • /
    • 2023
  • Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • 한국간담췌외과학회지
    • /
    • 제28권1호
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.