• Title/Summary/Keyword: Radiometric Change

Search Result 42, Processing Time 0.032 seconds

Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron (다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정)

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.515-523
    • /
    • 2018
  • In order to obtain consistent change detection result for multi-temporal satellite images, preprocessing must be performed. In particular, the preprocessing related to the spectral values can be performed by the radiometric normalization, and relative radiometric normalization is generally utilized. However, most relative radiometric normalization methods assume a linear relationship between the two images, and nonlinear spectral characteristics such as phenological differences are not considered. Therefore, this study proposes a relative radiometric normalization which assumes nonlinear relationships that can perform compositive normalization of radiometric and phenological characteristics. The proposed method selects the subject and reference images, and then extracts the radiometric control set samples through the no-change method. In addition, spectral indexes as well as pixel values are extracted in order to consider sufficient information, and modeling of nonlinear relationships is performed through multilayer perceptron. Finally, the proposed method is compared with the conventional relative radiometric normalization methods, which shows that the proposed method is visually and quantitatively superior.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

Estimation of Disparity Map having Reliability to Changes of Radiometric (Radiometric 특성 변화에 신뢰성을 가지는 Disparity Map 예측)

  • Shin, Kwang-mu;Kim, Sung-min;Cho, Mi-sook;Chung, Ki-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.93-96
    • /
    • 2015
  • The aim of the estimation of disparity map is to find the corresponding pixels from similar two or more images. However, it is a difficult problem to get precise and consistent disparity under a variety of real world situations. In other words, the color values of stereo images are easily influenced by radiometric properties such as illumination direction, illumination color, and camera exposure. Therefore, conventional stereo matching methods can have low performances under radiometric conditions. In this paper, we propose an approaching of disparity map estimation that is reliable in controlling various radiometric variations close to the real environment. This method is motivated by following constancy. Even though each other has different radiometric property in stereo images, intensity of pixels of object have general constancy in specific block. Experimental results show that the proposed method has better performances compared to the comparison group under different radiometric conditions between stereo images. Consequentially, the proposed method is able to estimate the disparity map in stable under various radiometric variations.

  • PDF

Relative Radiometric Normalization of Hyperion Hyperspectral Images Through Automatic Extraction of Pseudo-Invariant Features for Change Detection (자동 PIF 추출을 통한 Hyperion 초분광영상의 상대 방사정규화 - 변화탐지를 목적으로)

  • Kim, Dae-Sung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This study focuses on the radiometric normalization, which is one of the pre-processing steps to apply the change detection technique fur hyperspectral images. The PIFs which had radiometric consistency under the time interval were automatically extracted by applying spectral angle, and used as sample pixels for linear regression of the radiometric normalization. We also dealt with the problem about the number of PIFs for linear regression with iteratively quantitative methods. The results were assessed in comparison with image regression, histogram matching, and FLAASH. In conclusion, we show that linear regression method with PIFs can carry out the efficient result for radiometric normalization.

Robust Stereo Matching under Radiometric Change based on Weighted Local Descriptor (광량 변화에 강건한 가중치 국부 기술자 기반의 스테레오 정합)

  • Koo, Jamin;Kim, Yong-Ho;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.164-174
    • /
    • 2015
  • In a real scenario, radiometric change has frequently occurred in the stereo image acquisition process using multiple cameras with geometric characteristics or moving a single camera because it has different camera parameters and illumination change. Conventional stereo matching algorithms have a difficulty in finding correct corresponding points because it is assumed that corresponding pixels have similar color values. In this paper, we present a new method based on the local descriptor reflecting intensity, gradient and texture information. Furthermore, an adaptive weight for local descriptor based on the entropy is applied to estimate correct corresponding points under radiometric variation. The proposed method is tested on Middlebury datasets with radiometric changes, and compared with state-of-the-art algorithms. Experimental result shows that the proposed scheme outperforms other comparison algorithms around 5% less matching error on average.

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Local-Based Iterative Histogram Matching for Relative Radiometric Normalization

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2019
  • Radiometric normalization with multi-temporal satellite images is essential for time series analysis and change detection. Generally, relative radiometric normalization, which is an image-based method, is performed, and histogram matching is a representative method for normalizing the non-linear properties. However, since it utilizes global statistical information only, local information is not considered at all. Thus, this paper proposes a histogram matching method considering local information. The proposed method divides histograms based on density, mean, and standard deviation of image intensities, and performs histogram matching locally on the sub-histogram. The matched histogram is then further partitioned and this process is performed again, iteratively, controlled with the wasserstein distance. Finally, the proposed method is compared to global histogram matching. The experimental results show that the proposed method is visually and quantitatively superior to the conventional method, which indicates the applicability of the proposed method to the radiometric normalization of multi-temporal images with non-linear properties.

Characteristics of Precipitable Water Vapor and Liquid Water Path Retrieved from a Ground-based Microwave Radiometric Profiler at Haenam NCIO (해남 라디오미터로부터 산출된 가강수량과 구름물량의 분포특성)

  • Won, Hye Young;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Temporal distributions and characteristics of PWV (Precipitable Water Vapor) and LWP (Liquid Water Path) are investigated by using the microwave radiometric profiler at Haenam NCIO from 1 August 2007 to 31 July 2008. Temporal variations of PWV are closely connected with the thermal response of water vapor in atmosphere. The variations of LWP are characterized by the rainfall variation being basically attributable to the heavy rain-bearing clouds. The frequency distributions of PWV and LWP according to the four sky conditions ('clear', 'lightly cloudy', 'cloudy', and 'deeply cloudy') by total cloud amount at Wando Observatory corresponds with a change of slope in cumulative distribution function for PWV and LWP. There results implies that the classification of sky condition can be applied by using the distribution of PWV and LWP from microwave radiometric profiler.

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

A NEW VEGETATION INDEX FOR REMOTE SENSING

  • Iisaka, Joji;Takako, Sakurai-Amano
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.256-261
    • /
    • 1999
  • Global vegetation change is one of major global concerns. Remote sensing images provide an efficient and useful data source to estimate global vegetation covers, and a number of methods have been proposed to estimate them. Among them, the NDVI is one of the most popular indices, and it is_easy to calculate with simple image computing. However, this index is very much affected by the radiometric environment of sensing such as atmospheric conditions and the sun illumination angle. Therefore, it is not appropriate to apply the NDVI to investigate seasonal changes. This paper discusses these problems and proposes an alternative index, MODVI(Modified Vegetation Index), that is less affected by radiometric environment changes. An experiment was conducted to compare these two indices using temporal Landsat TM sub-scenes.

  • PDF