• 제목/요약/키워드: Radiological dose assessment

검색결과 199건 처리시간 0.022초

정상 성인의 좌심실 벽두께와 내강 크기에 대한 심초음파영상과 전산화단층영상의 비교 (Comparison of Echocardiography and Computed Tomography on Cardiac Wall Thickness and Internal Dimension Size of Left Ventricle in Normal Adults)

  • 지명훈;김성환;성열훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.545-552
    • /
    • 2018
  • The purpose of this study was evaluated the relationship between echocardiography and cardiac computed tomography in normal adults by visual assessment, and evaluated the effective doses of cardiac computed tomography. The subjects were 100 normal patients who visited two general hospitals in Chungnam, from January 1 to May 30, 2018. We obtained images by using these modalities and evaluated the wall thickness and internal dimension of the Left Ventricle with visual assessment. To evaluate the appropriateness of the visual evaluation, two evaluators who were trained for one week were measured and the agreement between the evaluators were verified by statistical analysis. The effective doses of computed tomography were evaluated using the dose length product. As a result, there was a high correlation between the two modalities. The agreement between the two visual evaluator were also highly agreed. The mean X-ray dose of the subjects was $11.1{\pm}3.1mSv$. Although the purpose of imaging is somewhat different in the clinical setting, echocardiography could achieve the same results as radiation-invasive computed tomography. It is thought that utilization will become even larger.

Development of a prototype TL/OSL reader for on-site use in a large-scale radiological accident

  • Hyoungtaek Kim;Chang-Young Park;Sang In Kim;Min Chae Kim;Jungil Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2113-2119
    • /
    • 2024
  • This study presents the development and characterization of a prototype TL/OSL reader for the retrospective dose assessment of individuals in radiological emergencies. The reader is portable, semi-automatic, and capable of accurate measurements. The dimension of the reader is 25 × 25 × 37 cm3 and the weight is about 15 kg. The reader consists of a sample moving stage, a heating module, an optical stimulation module, a detection module, a data acquisition (DAQ) unit, a nitrogen gas control module, and a PC with a GUI program. The reader has three measurement modes: TL, CW_OSL, and custom mode. The reader was characterized using commercial thermal luminescence dosimeters (TLD, LiF:Mg,Cu,Si) and optically stimulated dosimeters (OSLD, Al2O3:C), as well as fortuitous materials, such as display glasses and resistors of mobile phone. The results showed that the reader is capable of measuring signals with a detection limit of up to 0.02 mGy using a commercial dosimeter. In the dose recovery test using fortuitous materials, the reconstructed doses obtained three days post-irradiation closely aligned with the initially administered doses. As a result, this study suggests that the developed TL/OSL reader is a promising instrument for emergency dose assessment at accident sites.

한국 노인의 일반촬영 이용량 및 피폭선량: 2016년 고령환자데이터 기반 (General Radiography Usage and Exposure Dose of Korean Elderly: Based on Data from Aged Patients in 2016)

  • 길종원;유세종;이원정
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.495-502
    • /
    • 2021
  • This study aims to provide basic data for elderly health insurance policy and medical radiation safety management by analyzing the general radiography usage and exposure dose of the elderly in Korea. The effective dose for each general radiography was calculated using the ALARA-GR program for 260 general radiography codes selected from 'National Health Insurance Care Benefit Cost'. The usage of general radiography was analyzed in the 2016 elderly patient data of the Health Insurance Review and Assessment Service, and the effective dose for each general radiography was applied. The general radiography usage and exposure dose per person aged 65 years and over was 6.47 cases and 0.56 mSv. Females showed higher value than males as 7.15 cases and 0.66 mSv(p<.001). By age, those between 75 and 79 showed the highest number as 6.97 cases and 0.62 mSv(p<.001). Those who were supported by Medical Aid showed higher value than those who were insured by National Health Insurance as 8.82 cases and 0.76 mSv(p<.001). In addition, the ratio by radiography was in the order of Chest 20.85%, Knee Joint 15.58%, and L-spine 14.67%, and the exposure dose was L-spine 29.40%, Chest 15.82%, Abdomen 7.97%, and Entire Spine 7.20%. General radiography, which is widely used due to the high frequency of diseases in the elderly population should be taken into consideration when establishing health insurance policies. In addition, it is necessary to check whether the general radiography with high exposure dose is performed as a routine examination without considering medical necessity.

전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가 (Beam Spoiler-dependent Total Body Irradiation Dose Assessment)

  • 이동연;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권2호
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

An External Dose Assessment of Worker during RadWaste Treatment Facility Decommissioning

  • Chae, San;Park, Seungkook;Park, Jinho;Min, Sujung;Kim, Jongjin;Lee, Jinwoo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.81-87
    • /
    • 2020
  • Background: Kori unit #1 is permanently shut down after a 40-year lifetime. The Nuclear Safety and Security Commission recommends establishing initial decommissioning plans for all nuclear and radwaste treatment facilities. Therefore, the Korea Atomic Energy Research Institute (KAERI) must establish an initial and final decommissioning plan for radwaste-treatment facilities. Radiation safety assessment, which constitutes one chapter of the decommissioning plan, is important for establishing a decommissioning schedule, a strategy, and cost. It is also a critical issue for the government and public to understand. Materials and Methods: This study provides a method for assessing external radiation dose to workers during decommissioning. An external dose is calculated following each exposure scenario, decommissioning strategy, and working schedule. In this study, exposure dose is evaluated using the deterministic method. Physical characterization of the facility is obtained by both direct measurement and analysis of the drawings, and radiological characterization is analyzed using the annual report of KAERI, which measures the ambient dose every month. Results and Discussion: External doses are calculated at each stage of a decommissioning strategy and found to increase with each successive stage. The maximum external dose was evaluated to be 397.06 man-mSv when working in liquid-waste storage. To satisfy the regulations, working period and manpower must be managed. In this study, average and cumulative exposure doses were calculated for three cases, and the average exposure dose was found to be about 17 mSv/yr in all the cases. Conclusion: For the three cases presented, the average exposure dose is well below the annual maximum effective dose restriction imposed by the international and domestic regulations. Working period and manpower greatly affect the cost and entire decommissioning plan; hence, the chosen option must take account of these factors with due consideration of worker safety.

안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가 (Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan)

  • 문세영;홍상우;서지숙;김영범;곽완신;이성영;김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.

RESRAD 코드를 활용한 규제해제 폐기물 소각처분에 대한 안정성 평가 (Safety Assessment on the Incineration Disposal of Regulation Exempt Waste by RESRAD Code)

  • 김희경;한상욱;박수리;김병직
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권1호
    • /
    • pp.67-73
    • /
    • 2018
  • In this paper, risk assessment was conducted to verify self - disposal requirements by landfill for exempted incineration ash by using Resrad Ver.6.5 computer code. The result of risk assessment by landfill for the incineration by-product is that individual dose is $6.91{\times}10^{-2}{\mu}Sv\;y-1$ and collective dose is $3.475{\times}10^{-7}man-Sv\;y-1$. It proved that the result meets reference dose of individual dose $10{\mu}Sv\;y-1$ and collective dose 1 man-Sv y-1 for general public. According to the current 'Nuclear Safety Commission Notice [No. 2014-3]', it states that the exempted wastes can be disposed of by incineration, landfill and recycling. However, most of recently documents and papers related to exempted wastes are disposed of by landfill and recyling and it could not confirm the case of exempt by incineration. If the national consensus is derived and treating the waste by using process of incineration is activated, it could be considered to treat low level of radiation wastewater and activated carbon excluded from exempted waste because of nuclide $^3H$ and $^{14}C$.

Radiological Alert Network of Extremadura (RAREx) at 2021:30 years of development and current performance of real-time monitoring

  • Ontalba, Maria Angeles;Corbacho, Jose Angel;Baeza, Antonio;Vasco, Jose;Caballero, Jose Manuel;Valencia, David;Baeza, Juan Antonio
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.770-780
    • /
    • 2022
  • In 1993 the University of Extremadura initiated the design, construction and management of the Radiological Alert Network of Extremadura (RAREx). The goal was to acquire reliable near-real-time information on the environmental radiological status in the surroundings of the Almaraz Nuclear Power Plant by measuring, mainly, the ambient dose equivalent. However, the phased development of this network has been carried out from two points of view. Firstly, there has been an increase in the number of stations comprising the network. Secondly, there has been an increase in the number of monitored parameters. As a consequence of the growth of RAREx network, large data volumes are daily generated. To face this big data paradigm, software applications have been developed and implemented in order to maintain the indispensable real-time and efficient performance of the alert network. In this paper, the description of the current status of RAREx network after 30 years of design and performance is showed. Also, the performance of the graphing software for daily assessment of the registered parameters and the automatic on real time warning notification system, which aid with the decision making process and analysis of values of possible radiological and non-radiological alterations, is briefly described in this paper.