Browse > Article
http://dx.doi.org/10.1016/j.net.2021.08.007

Radiological Alert Network of Extremadura (RAREx) at 2021:30 years of development and current performance of real-time monitoring  

Ontalba, Maria Angeles (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Corbacho, Jose Angel (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Baeza, Antonio (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Vasco, Jose (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Caballero, Jose Manuel (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Valencia, David (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Baeza, Juan Antonio (Environmental Radioactivity Laboratory (LARUEX). University of Extremadura)
Publication Information
Nuclear Engineering and Technology / v.54, no.2, 2022 , pp. 770-780 More about this Journal
Abstract
In 1993 the University of Extremadura initiated the design, construction and management of the Radiological Alert Network of Extremadura (RAREx). The goal was to acquire reliable near-real-time information on the environmental radiological status in the surroundings of the Almaraz Nuclear Power Plant by measuring, mainly, the ambient dose equivalent. However, the phased development of this network has been carried out from two points of view. Firstly, there has been an increase in the number of stations comprising the network. Secondly, there has been an increase in the number of monitored parameters. As a consequence of the growth of RAREx network, large data volumes are daily generated. To face this big data paradigm, software applications have been developed and implemented in order to maintain the indispensable real-time and efficient performance of the alert network. In this paper, the description of the current status of RAREx network after 30 years of design and performance is showed. Also, the performance of the graphing software for daily assessment of the registered parameters and the automatic on real time warning notification system, which aid with the decision making process and analysis of values of possible radiological and non-radiological alterations, is briefly described in this paper.
Keywords
Radiological alert network; Emergency radiation monitoring; Risk assessment; Decision support systems;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Del Campo, N. Lorente, J. Serrano, Estimacion de las medidas de las redes de alerta a la radiactividad en el entorno de C.N. Almaraz (RAR y RAREx) y de las unidades moviles desplazadas a la zona durante la realizaci on del ejercicio CURIEX 2013, 2013. In Spanish) TechnicalReport CSN/TGE/AEIR/13/2321, www.curiex.es/en/home (For English readers).
2 A. Baeza, J.A. Corbacho, J.M. Caballero, M.A. Ontalba, J. Vasco, D. Valencia, Development of an advanced radioactive airborne particle monitoring system for use in early warning networks, J. Radiol. Prot. 37 (3) (2017) 642.   DOI
3 ISO 9001:2015(En) Quality Management Systems- Requirements.
4 ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories, 2017.
5 Centrales Nucleares Almaraz-Trillo, Comunicacion CNAT. Almaraz NPP Internal Report, Informe Ambiental 2018, 2019 (In Spanish).
6 Gammatracer, 2020. Retrieved from: https://www.bertin-instruments.com/product/environmental-radiation-monitoring-systems/gammatracer/.
7 A. Baeza, J.A. Corbacho, J. Miranda, Design and implementation of a mobile radiological emergency unit integrated in a radiation monitoring network, IEEE Trans. Nucl. Sci. 60 (2) (2013) 1400-1407.   DOI
8 A. Baeza, J.A. Del Puerto, M. Del Rio, C. Miro, F. Ortiz, J.M. Paniagua, Development and operativity of a real-time radiological monitoring network centered on the nuclear power plant of Almaraz, Spain, IEEE Trans. Nucl. Sci. 40 (6) (1993) 2014-2020.   DOI
9 R. Casanovas, J.J. Morant, M. Lopez, I. Hern andez-Giron, E. Batalla, M. Salvado, Performance of data acceptance criteria over 50 months from an automatic real-time environmental radiation surveillance network, J. Environ. Radioact. 102 (8) (2011) 742-748.   DOI
10 N. Fujinami, Observational study of the scavenging of radon daughters by precipitation from the atmosphere, Environ. Int. 22 (1996) 181-185.   DOI
11 A. Baeza, J.A. Corbacho, A. Rodriguez, J. Galvan, R. Garcia-Tenorio, G. Manjon, I. Serrano, Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels, J. Environ. Radioact. 114 (2012) 138-145.   DOI
12 Consejo de Seguridad Nuclear, Control de seguridad del agua de bebida, Guia de seguridad n° 7.7 (1994) (in Spanish).
13 P. Browne, JBoss Drools Business Rules, Packt Publishing Ltd, 2009.
14 M. Kottek, J. Grieser, C. Beck, B. Rudolf, F. Rubel, World map of the Koppen-Geiger climate classification updated, Meteorol. Z. 15 (3) (2006) 259-263.   DOI
15 C.L. Rete Forgy, A fast algorithm for the many pattern/many object pattern match problem, Artif. Intell. 19 (1) (1982) 17-37.   DOI
16 J. Gosling, The Java Language Specification, Addison-Wesley Professional, 2000.
17 Resultats De L'Essaid'Aptitude 154 DI 300. Mesure du debit d 'equivalent dedose gamma ambiant. PSE-ENV/SAME/2018-00030. Service d'analyses et de metrologie de l 'environnement.INTERLABORATORY COMPARISON FOR THE ENVIRONMENT ORGANIZED BY IRSN(Institut de Radioprotection et de Surete Nucleaire) [in French].
18 A. Baeza, J.A. Corbacho, J.M. Caballero, M.A. Ontalba, D. Valencia, J. Vasco, J.M. Gil, Lessons learnt from the radiological measures performed by the radiological emergency network of Extremadura in the international emergency exercise CURIEX 2013, J. Radiol. Prot. 36 (3) (2016) 616.   DOI
19 J.E. Yang, Fukushima Dai-Ichi accident: lessons learned and future actions from risk perspectives, Nuclear Engineering and Technology 46 (1) (2014) 27-38.   DOI
20 J. Zukowski, The Definitive Guide to Java Swing, Apress, 2006.
21 K.A.P. Kumar, G.A.S. Sundaram, B.K. Sharma, S. Venkatesh, R. Thiruvengadathan, Advances in gamma radiation detection systems for emergency radiation monitoring, Nuclear Engineering and Technology 52 (10) (2020) 2151-2161.   DOI
22 Council Directive 96/29/Euratom of 13 May 1996 Laying Down Basic Safety Standards for the Protection of the Health of Workers and the General Public against the Dangers Arising from Ionizing Radiation.
23 Berthold Technologies, Combined Particulates-Iodine Monitor Bai 9850-6, Standard Manual, 1997.
24 BAI-9125 water monitoring system, Manual. Berthold Technologies, 1992.
25 G. Berthold, Gamma Dose Rate Detector LB Bai 6361, 1996.
26 A. Baeza, J.M. Caballero, J.A. Corbacho, M. A. Ontalba Salamanca, J. Vasco, Proposed improvements to existing water monitoring systems in automatic radiological warning networks, J. Radiol. Prot. 34 (2) (2014) 313.   DOI
27 R. Abida, M. Bocquet, N. Vercauteren, O. Isnard, Design of a monitoring network over France in case of a radiological accidental release, Atmos. Environ. 42 (21) (2008) 5205-5219.   DOI
28 A. Mosleh, PRA: a perspective on strengths, current limitations, and possible improvements, Nuclear Engineering and Technology 46 (1) (2014) 1-10.   DOI