• Title/Summary/Keyword: Radioisotopes

Search Result 190, Processing Time 0.019 seconds

Accumulation of Radiocesium in Mushrooms

  • Lee, Young-Keun;Sathesh-Prabu, Chandran
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • In spite of colossal efforts taken for safe handling and storage of radioactive waste, the uncontrolled release of radiocesium ($^{137}Cs$ and $^{134}Cs$ isotopes) into the natural environment is inevitable. $^{137}Cs$ is of particular concern because of its long half-life, ability to transfer into biota through food chains, as well as its great mobility, bioavailability, and chemical and ecophysiological similarity with potassium. Radiocesium is released anthropogenically into the environment. Mushrooms are known for their ability to accumulate radionuclides, particularly radiocesium, which is heterogeneously distributed in the individual parts of mushrooms, and it is found that mushrooms are a hyper-accumulator of radiocesium from their environment than other vegetation. Mushrooms play a major role in the mobilization, accumulation, and translocation of cesium, i.e., decontamination of soils (mycoextraction) polluted with cesium radioisotopes, and this capacity appears to be a relevant bioindicator of cesium contamination in the environment. Moreover, the extension of mycelium into the soil makes the use of mushrooms as bioindicators of radiocesium possible. This paper reviews the potential of mushrooms in the accumulation of radiocesium from the environment, and dissertates the salient features to support the employment of mushrooms in environmental biomonitoring as a sensitive bioindicator of radiocesium contamination.

A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra

  • Galib, S.M.;Bhowmik, P.K.;Avachat, A.V.;Lee, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4072-4079
    • /
    • 2021
  • This article presents a study on the state-of-the-art methods for automated radioactive material detection and identification, using gamma-ray spectra and modern machine learning methods. The recent developments inspired this in deep learning algorithms, and the proposed method provided better performance than the current state-of-the-art models. Machine learning models such as: fully connected, recurrent, convolutional, and gradient boosted decision trees, are applied under a wide variety of testing conditions, and their advantage and disadvantage are discussed. Furthermore, a hybrid model is developed by combining the fully-connected and convolutional neural network, which shows the best performance among the different machine learning models. These improvements are represented by the model's test performance metric (i.e., F1 score) of 93.33% with an improvement of 2%-12% than the state-of-the-art model at various conditions. The experimental results show that fusion of classical neural networks and modern deep learning architecture is a suitable choice for interpreting gamma spectra data where real-time and remote detection is necessary.

Analysis of the influence of nuclear facilities on environmental radiation by monitoring the highest nuclear power plant density region

  • Lee, UkJae;Lee, Chanki;Kim, Minji;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1626-1632
    • /
    • 2019
  • Monitoring of environmental radioactivity is essential for ensuring the radiological safety of residents who live near nuclear power plants. Ulsan, South Korea, is surrounded by 16 nuclear power plants, the highest density in the country. In addition, the city contains facilities for conducting radiological nondestructive testing and using radioisotopes for medical purposes. It makes the confirmation of radiological safety particularly necessary. In this study, sampling points were selected based on regional characteristics, and surface water samples were pretreated and analyzed for gross beta and gamma radiation levels. In addition, the distribution of the city's gamma dose rate was determined using a mobile monitoring system and distribution visualization program. The results showed that there is no effect on the gross beta and gamma nuclides of artificial radionuclides, and the gamma dose rate of the entire region did not exceed the environmental radiation level in South Korea overall, confirming the radiological safety of the city.

Identification of public concerns about radiation through a big data analysis of questions posted on a portal site in Korea

  • Jeong, So Yun;Kim, Jae Wook;Joo, Han Young;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2046-2055
    • /
    • 2021
  • This paper analyzed the primary concerns about radiation among the Korean public with a big data analysis of questions posted at the section of "Knowledge iN" on the portal site NAVER in Korea from January 2010 to August 2020. First, we extracted questions about radiation and categorized them into the three categories with TF-IDF analysis: "Medical," "Career Counseling," and "General Interest". The "Medical" category includes questions about radiation diagnosis or treatment. The "Career Counseling" category includes questions about entering college and the prospect of finding jobs in radiation-related fields. The "General Interest" category includes questions about terminology and the basic knowledge of radiation or radioisotopes. Second, we extracted common questions for each category. Finally, we analyzed the temporal change in the numbers of questions for each category to confirm whether there is any correlation between radiation-related events and the number of questions. The analysis results demonstrate that major radiation-related events have little relevance to the number of questions except during March 2011.

Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products

  • Roshani, Mohammadmehdi;Phan, Giang;Faraj, Rezhna Hassan;Phan, Nhut-Huan;Roshani, Gholam Hossein;Nazemi, Behrooz;Corniani, Enrico;Nazemi, Ehsan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1277-1283
    • /
    • 2021
  • It is important for operators of poly-pipelines in petroleum industry to continuously monitor characteristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy gamma attenuation technique in combination with artificial neural network (ANN) is proposed to simultaneously determine type and amount of four different petroleum by-products. The detection system is composed of a dual energy gamma source, including americium-241 and barium-133 radioisotopes, and one 2.54 cm × 2.54 cm sodium iodide detector for recording the transmitted photons. Two signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the outputs.

Performance testing of a FastScan whole body counter using an artificial neural network

  • Cho, Moonhyung;Weon, Yuho;Jung, Taekmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3043-3050
    • /
    • 2022
  • In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim;Kanghyuk Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 2021
  • No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

Cu-64 as a Cancer Theranostics Agent

  • Kwang Il Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • Theranostics, a composite word of therapy and diagnosis, is known as personalized medicine and the concept of diagnosis and treatment at the same time. In nuclear medicine, it means performing both therapeutic and diagnostic radioisotope therapy using the same target molecule. The increased production and utilization of 64Cu opens a new era of theranostics. The studies introduced here have shown that 64CuCl2 and various compounds or biomolecules labeled with 64Cu are unique radiopharmaceuticals with physiological properties suitable for use as diagnostic and therapeutic agents. So far, these two abilities have been described only for radioactive iodine. Although 64Cu has complex chemical properties compared to other PET radioisotopes such as 68Ga, it has an appropriate half-life and enables high-quality PET images similar to 18F, which is an advantage in terms of diagnosis. In addition, since it also has therapeutic properties through the release of β- particles and Auger electrons by electron capture, radiopharmaceuticals using 64Cu stand for innovative radiopharmaceuticals for theranostic purposes. Therefore, based on the initial results obtained using 64Cu as a therapeutic agent, it is expected that additional research on the application of 64Cu will lead to a new era in the theranostics field.

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

Study on (n, α) reactions for the production of 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm radioisotopes used in nuclear medicine

  • Hallo M. Abdullah;Ali H. Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3352-3358
    • /
    • 2023
  • Nuclear medicine seems to be a decent choice of medicine in the recent decade. The radioactive isotopes 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm are extremely essential in nuclear medicine. The excitation functions of the 54Fe (n, α) 51Cr, 92Zr (n, α) 89Sr, 102Rh (n, α) 99Tc, 134Cs (n, α) 131I, 136Ba (n, α) 133Xe, 140La (n, α) 137Cs and 156Gd (n, α) 153Sm reactions were calculated in this study using the EMPIRE 3.2.3 and TALYS 1.95 nuclear codes. Additionally, the cross sections at 14-15 MeV were calculated using empirical formulae and the experimental data. The computer codes were compared to the experimental data and Empirical formulas as well as the evaluated data (TENDL 2021, JENDL 3.3, JENDL 5, JEFF 3.3, EAF 2010, CENDL 3.1, CENDL 3.2, ROSFOND 2010, FENDL 3.2 b, and BROND 3.1).