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a b s t r a c t

In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo
measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra.
In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) � 0.25, for the
whole body configuration, but three NPPs which participated in an additional lung configuration test in
the fission and activation product category did not meet the criterion. Due to the low resolution of the
FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show
sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and
137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the
FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even
though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks
were located in a low-energy region below 300 keV. Since the ANN performed better than the PA
method, it would be expected to be a promising approach to improve the accuracy and precision of
in vivo FastScan measurement for the lung configuration.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Whole body counters (WBCs) are used to measure inhaled or
ingested radioisotopes (RIs) of workers in nuclear power plants
(NPPs). In Korea, two types of WBCs are used for direct bioassay
(in vivo counting) at all NPPs. One is the FastScan (stand type),
which consists of two large NaI(Tl) detectors, and the other is the
AccuScan (bed type), which consists of two HPGe detectors.
Although the FastScan has a higher detection efficiency for gamma
rays and relatively shorter counting time than the AccuScan, it
shows inferior identification and quantification performance due to
the low resolution of the NaI(Tl) detectors.

Since 2010, to evaluate the performance of the WBCs used in
Korean NPPs, Korea Hydro and Nuclear Power e Central Research
Institute (KHNP-CRI) has conducted annual performance tests of
the WBCs in accordance with the ANSI/HPS N13.30e2011 Perfor-
mance Criteria for Radiobioassay, which give three types of testing
ower Co., Ltd., 1655, Bulguk-
a.

by Elsevier Korea LLC. This is an
geometries (lung, total body, and thyroid) for direct radio bioassay
performance testing [1]. In 2018, for three out of 13 NPPs, which
calibrate the lung configuration as well as the whole body config-
uration, KHNP-CRI added the lung configuration of the fission and
activation product category to the annual performance test. How-
ever, the results of the lung configuration for the three NPPs were
close to or exceeded the criterion (RMSE �0.25) given in ANSI/HPS
N13.30e2011, while those of the whole body configuration for all
NPPs satisfied the criterion [2].

With the development of artificial intelligence technology,
artificial neural network (ANN) has been used to overcome the
limitation of conventional peak analysis (PA) method in the field of
gamma ray spectroscopy. Several published papers have used ANNs
as an alternate identification or quantification method for low
resolution gamma ray spectrometers [3e6]. However, there have
been no papers applying ANNs to assess intake of RIs for NPP
workers.

In this study, we have developed an ANN as the quantification
method to improve the performance of the FastScan in the lung
configuration. In addition, we propose a quantification method of
converting the activity ratio to the amount of activity, because the
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chomh9525@khnp.co.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2022.03.008&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2022.03.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2022.03.008
https://doi.org/10.1016/j.net.2022.03.008


Fig. 2. Front (on the left) and side (on the right) views of the RMC-II transfer phantom.
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outputs of the ANN are not the amount of activity but the relative
activity of RIs in a sample. This results from that the activation
function of the output layer of the ANNs is a softmax function
which ranges from 0 to 1. Based on the quantification result, we
have carried out a performance test using our developed ANN and
compared its performance to the results of the PA method that is
currently used to quantify the results of the FastScan.

2. Materials and methods

2.1. Equipment

2.1.1. FastScan
The FastScan, shown in Fig. 1, is designed to quickly monitor

(e.g., in less than 3 min) the internal contamination of radiation
workers in NPPs. The dual NaI(Tl) detector design of the FastScan
provides a uniform response along the longitudinal axis from the
thyroid of the tallest 99th percentile male to the lower gastroin-
testinal (GI) tract of the shortest female [7].

2.1.2. RMC-II phantom
A Radiation Management Corporation (RMC-II) phantom (see

Fig. 2) was developed by Canberra Inc. to closely approximate the
source/absorber configurations specified by ANSI/HPS N13.30 as
appropriate for WBC calibration. The phantom consists of two
components: a “torso” section, which includes three interior source
cavities providing the lung, whole body and G.I. equivalent con-
figurations, and a “neck” section for the thyroid configuration [8].

Before any spectra were measured, the RMC-II phantom was
positioned on a stool at a height of 76 cm in the WBC shield ac-
cording to the manufacturer's recommendation.

2.1.3. Standard radioisotopes
To test the performance of the FastScan in accordance with

ANSI/HPS N13.30e2011, six standard RIs were manufactured and
their activities were certified by the Korea Research Institute of
Fig. 1. The FastScan (manufactured by Canberra).
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Standards and Science (KRISS). Table 1 shows the RIs used in the
performance test of the lung configuration, the minimum testing
level (MTL) given in ANSI/HPS N13.30e2011, and the certified
activity.

Fig. 3 shows the normalized spectra of the six standard RIs
measured by the FastScan at KHNP-CRI. Prior to measure each RI,
the FastScan was calibrated using a reference material certified by
the KRISS. Eq. (1) is the energy calibration result that decides the
relation between the channel and energy (E) in x-axis, and Eq. (2) is
FWHM (Full- Width at Half Maximum) calibration result that es-
tablishes the relation between the peak width and energy.

E¼4:48þ 1:925$ch þ 1:71E � 04$ch2 (1)

FWHM ¼ � 10:398 þ 2:303
ffiffiffi
E

p
(2)

2.2. Overview of ANN

2.2.1. Peak analysis vs. ANN
There are some differences in the analysis of RIs between the

ANN presented in this work and the conventional PAmethod that is
currently usedwith the FastScan for gamma ray spectroscopy. Table
4 summarizes and compares the two methods.
Table 1
Details of the RIs used in the performance test.

RIs Gamma rays MTLa (kBq) Activityb (kBq)

Energy(keV) Emission rate

54Mn 835 1 3 5.93
57Co 122 0.855 3 6.77

136 0.107
58Co 511 0.299 3 6.59

811 0.994
60Co 1173 1 3 6.18

1332 1
134Csc 563 0.083 e 6.72

569 0.154
605 0.976
796 0.855

137Csc 662 0.85 e 5.97

a The upper bound of the testing range shall not exceed 20 times the stated MTL.
b The activity of the highest and lowest testing RIs in any one test phantom shall

be within a factor of three of each other.
c These RIs shall be present in the phantom in appropriate amounts for inter-

ference but shall not be tested.



Fig. 3. Normalized spectra of the six standard RIs measured by the FastScan.

Table 2
Six test datasets.

RIs Case

1 2 3 4 5 6

54Mn B B B
57Co B B B
58Co B B B
60Co B B B
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2.2.2. Neural networks
ANNs are often used in machine learning. An ANN is a brain-

inspired mathematical framework that is used to learn represen-
tations from data [9]. An ANN is comprised of an input layer, hidden
layers, output layer, all of which are interlinked and contain several
neurons as shown in Fig. 4 [3].

The components and basic functions of an ANN are as follows:

� Input layer: The very first layer of the ANN. Training data is
entered into the input layer.

� Hidden layer: Any layer between the input and output layer.
Each hidden layer receives weights from the input layer or
previous layer, and then sends its output to the next hidden
layer or output layer.
Fig. 4. Example of an ANN (input layer: A, hidden layer: B, output layer: C).
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� Output layer: The last layer of the ANN, which produces the
output.

� Neuron: A basic information processing unit in a neural
network. Fig. 5 shows the operation of a single neuron. Input
vector A of ANN is weighted by weight vector W. The weighted
sum becomes the input of an activation function (f) that com-
putes the output of the neurons. The output is transferred to the
next layer and it becomes an element of the input vector C. By
changing weight vectors according to the true values, ANN can
minimize the gap between the output of ANN and the true
values.

In this study, a rectified linear unit (ReLU) function, shown in Eq.
(3) is used as the activation function of input and hidden layers. For
the output layer, the softmax function, shown in Eq. (4), is used
because it is the most suitable function in classification and has
been proven to show good performance for RI identification and
quantification [3].

reluðxÞ¼maxð0; xÞ (3)

softmaxðzjÞ¼
expðzjÞPK
k¼1expðzkÞ

(4)

During training of an ANN, the weights of the neurons in each
layer are adjusted to minimize the cost functions using a process
called backpropagation which recalculates the weights and biases
for each neuron. The cost function used in this study is cross en-
tropy [3].

E¼ � 1
N

XN
n¼1

yn logðbynÞ þ ð1� ynÞlogð1� bynÞ (5)

Where N is the total number of output nodes, yn is the truth of the
nth output, and byn is the ANN output of the nth output.

A new weight wnew
j , which reduces the cost function, can be

calculated using a gradient descent algorithm that finds the
gradient of the cost functions [4]. The equation for wnew

j is

wnew
j ¼ wold

j þ Dwj (6)
Fig. 5. The operation of a single neuron.
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Dwj ¼ � h
dE
dwj

(7)

where h is the learning rate of the ANN.
When an ANN reaches an ideal level of performance, the

gradient approaches 0 and the difference between the predictions
of the ANN and the actual values may be very small.
Fig. 6. Comparison of the synthetized spectrumwith measured spectrum for 1 min for
Case 3.
2.3. Creation of datasets

2.3.1. Training and validation datasets
Training and validation datasets are used to fit the parameters

(e.g., weights) and tune the hyper-parameters (e.g., number of
layers or neurons) during the learning process [10]. In previous
studies, creating a dataset of real gamma ray spectrawas deemed to
be so impracticable that simulated spectra created using computer
codes(e.g., GADRAS or MCNP6) or synthetic spectra were instead
used to train ANNs [3,4]. In this work, synthetic spectra, S, are
created as training and validation datasets because they are rela-
tively easy to make, less time consuming, and more realistic than
computer codes.

S¼
XN
i¼1

εi$yi$ri$Bi (8)

where N is the number of RIs, εi is the efficiency of the detector (i.e.,
net count rate per gamma rays), yi is the gamma ray emission rate
per decay, ri is the relative activity contribution of the RIs, and Bi is
the base spectrum (i.e., normalized spectrum) of the RIs to be
trained [5].

To make the base spectra, each RI was inserted into the cavity of
the lung configuration of the RMC-II phantom and counted for
1,800 s. Using Eqs. (8), 50,000 and 5,000 synthetic spectra were
created for the training and validation sets, respectively. The
amount of the data sets in this study would be enough if the RMSE
values derived by the ANN satisfy the criterion, RMSE �0.25.
Table 3
Range of hyperparameter search spaces and optimized values according to Bayesian
search.

Hyperparameters HP Range Optimized HP Values

Number of hidden layers 1e5 2
Number of neurons in hidden layer 1 102e103 546
Number of neurons in hidden layer 2 102e103 828
Learning rate 10�4 - 10�2 1.35ⅹ10�3

Batch size 30e500 64
2.3.2. Test data sets
Test datasets, which are independent of the validation datasets,

are used only once to assess an ANN model because tuning of the
hyper-parameters through the repeated use of the validation
datasets may leak some information about the validation datasets
to the ANN model [9]. The test datasets used to evaluate the per-
formance of the ANN are the actual spectra of each RI measured in
the FastScan, not by synthesizing the base spectra. Here, the mea-
surement time of the actual spectra is set to 1 min because the
measurement time of the FastScan in Korea NPPs is normally set to
1 min. Each RI was measured five times, which is the minimum
number of replicates required for a performance test according to
ANSI N13.30e2011. Two interfering RIs,134Cs and 137Cs, and any two
RIs among 54Mn, 57Co, 58Co, and 60Co were selected to satisfy the
test condition given in ANSI N13.30e2011. Table 2 shows the six
cases that resulting from the combination (4C2 ¼ 6) of the two RIs
that can be selected from the RI set. The two interfering RIs, 134Cs
and 137Cs, are included in all the cases.

Fig. 6 shows an example of a comparison of the synthetized
spectrum with measured spectrum for 1 min for Case 3.

The relative activity contributions, ri, for synthetizing 54Mn,
60Co, 134Cs, 137Cs are 0.1, 0.31, 0.24, and 0.35, respectively. As shown
in Fig. 6, the synthetic spectrum mimics the measured spectrum
well enough to be used for the training and validation of the ANN.
3046
2.4. Hyperparameter optimization (HPO)

Hyperparameters refer to the variables which determine the
structure of an ANN and how the ANN is trained. For example, the
former includes the number of hidden layers and the number of
nodes in each hidden layer, while the latter includes the learning
rate, batch size, activation functions, etc. Identification of the op-
timum hyperparameters can enhance the performance of an ANN.
Various algorithms are used for the HPO (e.g., grid search, random
search, Bayesian search, etc.). In this work, Bayesian optimization,
one of the automated HPO methods, is used because it is more
computationally efficient at finding the optimum hyperparameters
compared with grid or random search. Bayesian optimization in
this study is implemented by using the Gaussian process of the
Python package, Scikit-optimize.

The selected hyperparameters, range of the hyperparameters,
and optimized hyperparameter values which produce the best ac-
curacy (about 97%) on validation datasets for the ANN presented in
this work are given in Table 3.
2.5. Quantification of activity from the ANN output

To calculate the Br, SB, and RMSE values for the performance test,
the output of the ANN resulting from use of the softmax function
should be converted from relative activity to the amount of the
activity of an individual RI in a sample. This can be done as follows:

The net count rate is calculated by subtracting the background
count rate from the gross count rate. The net count rate (x cps) of a
spectrum can be expressed as



Table 4
Summary of the differences between the ANN and PA method.

ANN PA method

Nuclide identification Uses the activity ratio which exceeds a pre-determined
threshold

Uses the peak search algorithm, energy calibration result, and nuclide
library

Features used for
quantification

Entire spectrum (including Compton continuum) Part of spectrum (i.e., photopeak region)

Quantification method Predicts activity ratio with a trained ANN Corrects count rate with an efficiency calibration curve
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x cps¼
XN
i¼1

Ai$εi$yi (9)

where Ai is the activity of the ith RI, which is unknown and εi and yi
are the efficiency and gamma ray emission rate, which are the same
variables given in Eq. (8). Because the output of the ANN is the
relative activity contribution in a sample, Ai can be expressed as

Ai ¼
ri
rj
Aj (10)

where Aj is the activity of the RI, ri is the relative activity contri-
bution of Ai, and rj is the relative activity contribution of Aj.

For example, if we quantify the amount of activity of A1 from the
output (N ¼ 6) of the ANN, the activity of the other five RIs can be
expressed using Eq. (10).

A2 ¼
r2
r1
A1; A3 ¼ r3

r1
A1; A4 ¼ r4

r1
A1; A5 ¼ r5

r1
A1; A6 ¼ r6

r1
A1

By inserting the values of A2 to A6 into Eq. (9), we can solve for
A1

A1 ¼
x cpsPN

i¼1
ri
r1
$εi$yi

Using the same procedure, the other five RIs can also be
quantified.
2.6. Performance criterion

The performance of the FastScan is evaluated by the root mean
square error (RMSE) of relative bias and precision according to ANSI
N13.30e2011. To be acceptable, the RMSE shall be less than or equal
to 0.25. RMSE is calculated as follows [1]:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2r þ S2B

q
� 0:25 (11)
Table 5
The ANN outputs and net count rate for Case 1.

No Activity ratio Net count rate

54Mn 57Co 58Co 60Co 134Cs 137Cs

1 0.211 0.192 0.010 0.001 0.286 0.300 1,010
2 0.211 0.199 0.000 0.000 0.286 0.303 1,003
3 0.213 0.201 0.000 0.000 0.285 0.302 1,001
4 0.216 0.201 0.000 0.000 0.285 0.298 1,005
5 0.215 0.198 0.000 0.000 0.285 0.302 1,001
2.6.1. Relative bias
Relative bias, Br , is a measure of how close the assessed activity

is to the actual activity. It is calculated as the average in the indi-
vidual relative bias statistic [1].

Br ¼
XN
i¼1

Bri
N

(12)

where N is the number of measurements and Bri is a relative bias
statistic defined for the purpose of performance testing of a finite
number of measurements [1].
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Bri ¼
ðAi � AaiÞ

Aai
(13)

where Ai is the assessed value of the ith measurement of RIs and Aai
is the actual activity of the RIs. For convenience, absolute values of
Br are used in this study.

2.6.2. Relative precision
The relative precision of the measurement process represents

the relative dispersion of the values of Bri from the mean Br; It is
defined as follows [1]:

SB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðBri � BrÞ2
ðN � 1Þ

s
(14)

2.6.3. Decision of net count rate of the PA method
In the PA method mentioned by the manual of the manufac-

turer, Canberra Inc., the left and right limits of ROI (Region of In-
terest) are determined by 1.25 FWHM of the peak area and then the
left and right boundary of the ROI are determined by the X-point
average algorithm provided by Genie 2000 software. After deciding
the ROI, the net count rate, which is gross peak area minus back-
ground continuum under the peak area, is calculated by Sum/Non-
Linear Least Squares Fit Peak Area algorithm provided by the same
software [11].

3. Results and discussion

To calculate the RMSE values of the ANN results, activity ratios,
which are the outputs of the ANN, were converted to the amount of
the activity using Eqs. (9) and (10). For example, Table 5 shows the
outputs of the ANN for Case 1 and the net count rates calculated
from the spectra. Activity ratios of less than 0.05 were considered
false positives. In Table 5, the ratios for 58Co and 60Co are missing
because they provided the data for the case.

Using Eq. (9), the efficiency (εi) values for
54Mn, 57Co, 58Co, 60Co,

134Cs, and 137Cs were 0.041, 0.025, 0.041, 0.04, 0.04, and 0.043,
respectively, and the gamma ray emission rates yi given in Table 1
were used for each RI.

Table 6 shows the converted activities for 54Mn corresponding
to the values in Table 5, as well as a comparison of the performance



Table 6
Performance comparison (ANN vs. PA method) for54Mn in Case 1.

No Activity (Bq) Relative bias statistic (Bri)

ANN PA method ANN PA method

1 4,267 3,251 0.008 0.235
2 4,217 3,973 0.004 0.061
3 4,235 3,865 0.001 0.087
4 4,324 3,607 0.022 0.147
5 4,282 4,098 0.012 0.031

Relative bias (Br) 0.008 0.112
Relative precision (SB) 0.010 0.080
RMSE 0.013 0.137

Fig. 8. Comparison of the relative bias (Br) values resulting from the ANN and PA
method.
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test between the ANN and PAmethods. In this case, the RMSE value
of the ANN is about 10 times lower than that of the PA method.

All the outputs of the ANN were converted to the amount of the
activity using the procedure discussed above and the activity ac-
cording to the PA method were referred to the analysis reports of
the FastScan.

To compare performance between the ANN and PA method for
the six cases shown in Table 2, relative bias (Br), relative precision
(SB), and RMSE values were calculated. The results are depicted as
histograms in Figs. 7e9, respectively. In Fig. 7, the horizontal red
line shows the limit of the criterion.

Table 7 shows the numerical RMSE values derived using the two
methods, which are depicted in Fig. 7.

In all cases, the RMSE values of the ANN have met the criterion,
while some of the RMSE values derived from the PA method were
close to or exceeded the criterion. The RMSE values of the ANN
range from 0.008 to 0.214; these values are lower than those of the
PA method, which range from 0.054 to 0.321. The maximum RMSE
value produced by the ANN was 0.214 for 57Co in Case 1, which
satisfies the criterion, while that of the PA method is 0.321 for 57Co
in Case 5, which exceeds the criterion. The performance of the ANN
is superior to that of the PA method, except for in three instances,
57Co in Case 1, 60Co in Case 3, and 58Co in Case 5, which show little
disparity between the two methods.

We classified the results of the performance test into three
categories based on the energy range of the RIs that were tested.
Fig. 7. Comparison results of the RMSE values resulting from the ANN and PA method.
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ⅰ) High-energy gamma ray emitter with photopeaks that are not
overlapped by those of interfering RIs

In cases that included 60Co, a high-energy gamma ray emitter,
both the ANN and PA method show the lowest RMSE values, as
shown in Fig. 7. In Cases 3,4, and 6, the maximum RMSE of the ANN
Fig. 9. Comparison of the relative precision (SB) values resulting from the ANN and PA
method.

Table 7
RMSE values derived from the ANN and PA method.

Case RI RMSE RI RMSE

ANN PA ANN PA

1 54Mn 0.013 0.137 57Co 0.214 0.223
2 54Mn 0.065 0.144 58Co 0.131 0.249
3 54Mn 0.082 0.151 60Co 0.052 0.063
4 58Co 0.101 0.187 60Co 0.027 0.055
5 58Co 0.126 0.132 57Co 0.132 0.321
6 60Co 0.008 0.054 57Co 0.138 0.241
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and PA method for 60Co are only 0.052 and 0.063, respectively,
which are quite low compared to the criterion, and the ANN shows
better performance (lower values) than the PA method. In Figs. 8
and 9, the ANN also shows lower Br and SB values than the PA
method with the exception of the Br value of Case 3 for 60Co.

In the case of 60Co, the photopeaks at 1.17 MeV and 1.33 MeV do
not overlap with those of 134Cs and 137Cs, as shown in Fig. 3.
Therefore, it is not difficult to differentiate and quantify 60Co using
either the ANN or PA when interfering RIs, 134Cs and 137Cs, are
present.

ⅱ) Medium-energy gamma ray emitters with photopeaks that are
overlapped by those of interfering RIs

In cases that included 54Mn or 58Co, the photopeaks of the two
gamma ray emitters are partially overlapped by those of 134Cs. The
835 keV photopeak of 54Mn is overlapped by the 796 keV photo-
peak of 134Cs, and the 511 and 811 keV photopeaks of 58Co are
overlapped by the 605 and 796 keV photopeaks of 134Cs, respec-
tively. These overlapping peaks result from the inferior resolution
of the NaI(Tl) detectors of the FastScan. However, the 662 keV
photopeak of 137Cs does not overlap with the peaks of the four RIs
that were tested, as shown in Fig. 3. In these cases, the performance
of the ANN developed in this study is superior to that of the PA
method except for 58Co in Case 5. The RMSE values of the ANN for
54Mn and 58Co range from 0.013 to 0.137, whereas those of the PA
method range from 0.132 to 0.249:

� In Case 1, the RMSE value of the ANN for 54Mn is about 14 times
lower than that of the PA method. In addition, the Br, and SB
values of the ANN are 8 and 10 times lower, respectively, than
those of the PA method, as shown in Figs. 8 and 9.

� In Cases 2, 3, and 4, the RMSE values of the ANN for 54Mn or 58Co
are about 2 times lower than those of the PA method. In
particular, for 58Co in Case 2, the RMSE value (0.131) of the ANN
is considerably smaller than that of the PA method (0.249),
which is very close to the criterion. As shown in Figs. 8 and 9, the
Br and SB values of the ANN are 1.3e3.4 times lower than those
of the PA method except for the Br value for 54Mn in Case 3.

� In Case 5, for 58Co, the RMSE values of ANN and PA are 0.126 and
0.132, respectively, revealing little discrepancy between the two
methods. In this case, the Br value of the ANN is 2 times higher
than that of the PA method while the SB value of the ANN is
about 3.4 times lower than that of the PA method.

For 54Mn and 58Co, the ANN is less susceptible to photopeak
interference than the PA method. The superior performance of the
ANN may result from the fact that the ANN uses the features of the
entire spectra to identify and quantify the RIs while the PA method
uses only the photopeak regions of the spectra.

ⅲ) Low-energy gamma ray emitters with photopeaks located in
the low-energy region of the Compton continuum of inter-
fering RIs

Obtaining accurate low-energy spectrometry (below 300 keV)
using the NaI(Tl) detector has been challenging due to the Compton
continuum resulting from RIs with gamma ray energy exceeding
300 keV [12,13]. In addition, the energy range of the FastScan, ac-
cording to the specification sheet from Canberra Inc., ranges from
300 keV to 1.8 MeV. In cases that included 57Co, its 122 and 136 keV
photopeaks may face interference from the Compton continuum of
the interfering RIs, 134Cs and 137Cs. In addition, its two photopeaks
appear as one entity which does not show a Gaussian shape due to
the low resolution of the NaI(Tl) detectors, as seen in Fig. 3. In Cases
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1, 5, and 6, the RMSE values for 57Co derived by the ANN are within
the criterion, but those of the PAmethod are very close to or exceed
it:

� In Case 1, the ANN and PA method produced similar RMSE
values, 0.214 and 0.223, respectively for 57Co. The RMSE value of
0.214 is the highest value produced by the ANN in this study. Not
only the RMSE value but also the Br and SB values for 57Co are
similar between the ANN and PA method, as shown in Figs. 8
and 9.

� In Case 5, the RMSE value of the ANN for 57Co is 0.132 while that
of the PA method is 0.321, which exceeds the criterion. This is
attributable to the lower Br and SB values of the ANN than the PA
method. As shown in Fig. 8, the Br value of the PA method for
57Co is 0.289, which greatly exceeds the criterion irrespective of
the SB value.

� In Case 6, the RMSE value of the ANN for 57Co is about 1.7 times
lower than that of the PA method, which is very close to the
criterion. In addition, the Br and SB values of the ANN are 0.136
and 0.026, respectively, which are lower than those of the PA
method.

Although the FastScan uses NaI(Tl) detectors, the performance
of the ANN in this study satisfies the criterionwhen the low-energy
photopeaks (122 and 136 keV) of 57Co are located in the Compton
continuum of the interfering RIs. For the same case, however, the
PAmethod shows inferior performance as the RMSE values are very
close to or exceed the criterion. Because the peak shape of 57Co is
not Gaussian, fitting the photopeak using a Gaussian function
seems to contribute to the observed higher Br values compared to
those of the other RIs, as shown in Fig. 8. On the other hand, the
ANN shows promise in quantifying the RIs that emit low-energy
gamma rays below 300 keV with non-Gaussian photopeaks.

When applying the ANN to the FastScan data, all of the resulting
RMSE values for the lung configuration meet the criterion and are
less than those derived from the PAmethod. Thus, the performance
of the FastScan to measure intake of RIs in lung could be improved
through use of the ANN.

4. Conclusion

In order to improve the performance of the FastScan in the lung
configuration of the fission and activation products category given
in the ANSI/HPS 13.30e2011, we developed an ANN and compared
its performance with that of the PAmethod which is currently used
for identification and quantification of RIs. On the whole, the ANN
showed superior performance even when the photopeaks of the
analytes overlapped those of the interfering RIs or there was a low -
energy photopeak below 300 keV. All of the RMSE values derived
from the ANN were within the criterion (RMSE �0.25), while three
of those derived from the PAmethod exceeded or were very close to
it. Among the twelve RMSE values of the ANN, nine were about
2e10 times less than those of the PA method and the other three
were slightly less than those of the PA method. By using the ANN,
therefore, the performance of the FastScan in the lung configura-
tion can be improved to meet the criterion despite the low reso-
lution of the NaI(Tl) detector. In addition, using the quantification
method proposed in this study, the output of the ANN, which is a
relative activity contribution, can be converted to an absolute
measure of the activity of a single RI. However, the maximum RMSE
value of the ANNwas 0.214, which did not show a sufficient margin
to the criterion.

In future, we plan to develop an ANN focusing on the other five
categories of the lung configuration given in ANSI/HPS 13.30e2011.
These include X-ray and low-energy gamma emitters, 238Pu, 241Am,
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234Th, 235U, and 237Np. Because the ANN showed promise for
analysis of the low-energy gamma ray emitter 57Co, further
improvement in the FastScan is expected through development of
an ANN only for low-energy gamma emitters. In addition, we will
apply other machine learning methods such as convolutional
neural network (CNN) in order to minimize the RMSE values of the
FastScan. In 2021, KHNP-CRI plans to apply the ANN to the three
NPPs which did not meet the criterion in 2018 and to compare its
performance with the previous results.
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