• Title/Summary/Keyword: Radioactive material

Search Result 465, Processing Time 0.028 seconds

Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type (국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가)

  • Seong Hun Jeon;Seong Yeon Lee;Hyeok Jae Kim;Min Seong Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

The volcanic aspect on determining Site of nuclear power plant in Indonesia: Gap analysis between standard and regulations

  • Widjanarko;Budi Santoso;Rismiyanto;Kurnia Anzhar;Joko Waluyo;Gustini H. Sayid;Khusnul Khotimah;Nicholas Bertony Saputra;Agus Teguh Pranoto;Hadi Suntoko;Siti Alimah;Sriyana;Roni Cahya Ciputra;Alfitri Meliana
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2875-2880
    • /
    • 2024
  • The development of nuclear power plants is in three phases. The first phase is a consideration before the decision on the NPP construction program is approved, the second phase is the preparatory work for making contracts and preparing for the construction of NPP after the NPP construction policy is approved, and the third phase is contracting, licensing and building the first NPP. As a volcanically active country, Indonesia contains over 130 active volcanoes that are part of the Pacific Ring of Fire. The volcanic aspect is one of the safety factors considered while deciding the location of an NPP. Research on the potential of natural external risks to the determination of nuclear power plants in Indonesia, including the volcanic aspect, has been conducted based on the safety reference or safety guide of the IAEA and the Nuclear Energy Regulatory Body (BAPETEN) Regulation. Due to technological advancements, safety needs have evolved so the existing Indonesia National Standard (SNI) must be updated to comply with BAPETEN regulations. The substance in SNI 18-2034-1990 relating to volcanic features seems less relevant in actual conditions, given that more complete and exact criteria for determining a site guarantee the safety and health of residents and surrounding the environment site. The study intends to conduct a gap analysis of volcanic issues in SNI and volcanic regulations. The method used is identification requirements for volcanic aspects in SNI 18-2034-1990 about Determining Site of Nuclear Reactor Guidance with BAPETEN Chairman Regulation (BCR) number 4 of 2018 about Nuclear Installation Site Evaluation Safety Provisions and BCR number 5 of 2015 about Evaluation of Nuclear Installation Sites for Volcanic Aspects, and analysis uses a qualitative method of inductive techniques. The outcome of this research applies to suggesting a revision of SNI number 18-2034-1990, especially the volcanic aspect.

The Evaluation of Usefulness of Two Times Elution a Day of $^{99m}Tc$ Using $^{99}Mo$-$^{99m}Tc$ Generator ($^{99m}Tc$ 발생기의 24시간 내 2회 용출의 유용성 평가)

  • Kim, Jeong-Ho;Seo, Han-Kyung;Jeong, Yeong-Hwan;Kim, Yeong-Su;Kim, Byung-Cheol;Gwon, Yong-Ju;Lee, Jeong-Ok;Park, Yeong-Sun;Kim, Dong-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.83-86
    • /
    • 2010
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo$-$^{99m}Tc$ generator (generator) is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. Therefore we have tried to seek the new method which could run generator to increase activity of $^{99m}Tc$ in this study. Materials and Methods: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days from Monday to Friday using two generators was compared with 10 times elution. Appearance test, pH test, LAL test, sterility test, chemical impurity(Al) test, radio chemical purity test, ratio of $^{99}Mo$/$^{99m}Tc$ activity test have been done to check the stability of $^{99m}Tc$ eluting from generator respectively. Results: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days was 168.2 GBq (4545 mCi) and 10 times was 230.5 GBq (6230 mCi). All quality control tests were within normal limit. Conclusion: We got to know that 2 times elution a day obtained more $^{99m}Tc$ activity than one time elution in this study.

  • PDF

Hydraulic-Thermal-Mechanical Properties and Radionuclide Release-Retarding Capacity of Kyungju Bentonite (경주 벤토나이트의 수리-열-역학적 특성 및 핵종 유출 저지능)

  • Jae-Owan Lee;Won-Jin Cho;Pil-Soo Hahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Studies were conducted to select the candidate buffer material for a high-level waste (HLW) repository in Korea. This paper presents the hydraulic properties, the swelling properties, the thermal properties, and the mechanical properties as well as the radionuclide release-retarding capacity of Kyungju bentonite as part of those studies. Experimental results showed that the hydraulic conductivities of the compacted bentonite were very low and less than $10^{-11}$m/s. The values decreased with increasing the dry density of the compacted bentonite. The swelling pressures were in the range of 0.66 MPa to 14.4 ㎫ and they increased with increasing the dry density. The thermal conductivities were in the range of 0.80 ㎉/m $h^{\circ}C$ to 1.52 ㎉/m $h^{\circ}C$. The unconfined compressive strength, Young's modulus and Poison's ratio showed the range of 0.55 ㎫ to 8.83 ㎫, 59 ㎫ to 1275 ㎫, and 0.05 to 0.20, respectively, when the dry densities of the compacted bentonite were 1.4 Ms/㎥ to 1.8 Mg/㎥. The diffusion coefficients in the compacted bentonite were measured under an oxidizing condition. The values were $1.7{\times}10^{-10}$m^2$/s to 3.4{\times}10^{-10}$m^2$/s for electrically neutral tritium (H-3), 8.6{\times}10^{-14}$m^2$/s to 1.3{\times}10^{-12}$m^2$/s for cations (Cs, Sr, Ni), 1.2{\times}10^{-11}$m^2$/s to 9.5{\times}10^{-11}$m^2$/s for anions (I, Tc), and 3.0{\times}10^{-14} $m^2$/s to 1.8{\times}10^{-13}$m^2$/s $for actinides (U, Am), when tile dry densities were in the range of 1.2 Mg/㎥ to 1.8 Mg/㎥. The obtained results will be used in assessing the barrier properties of Kyungju bentonite as a buffer material of a repository in Korea.n Korea.

  • PDF

Analysis of the Thermal and Structural Stability for the CANDU Spent Fuel Disposal Canister (CANDU 처분용기의 열적-구조적 안정성 평가)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kim, Seong-Gi;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • In deep geological disposal system, the integrity of a disposal canister having spent fuels is very important factor to assure the safety of the repository system. This disposal canister is one element of the engineered barriers to isolate and to delay the radioactivity release from human beings and the environment for a long time so that the toxicity does not affect the environment. The main requirement in designing the deep geological disposal system is to keep the buffer temperature below 100$^{\circ}C$ by the decay heat from the spent fuels in the canister in order to maintain the integrity of the buffer material. Also, the disposal canister can endure the hydraulic pressure in the depth of 500 m and the swelling pressure of the bentonite as a buffer. In this study, new concept of the disposal canister for the CANDU spent fuels which were considered to be disposed without any treatment was developed and the thermal stability and the structural integrity of the canister were analysed. The result of the thermal analysis showed that the temperature of the buffer was 88.9$^{\circ}C$ when 37 years have passed after emplacement of the canister and the spacings of the disposal tunnel and the deposition holes were 40 m and 3 m, respectively. In the case of structural analysis, the result showed that the safety factors of the normal and the extreme environment were 2.9 and 1.33, respectively. So, these results reveal that the canister meets the thermal and the structural requirements in the deep geological disposal system.

  • PDF

The Evaluation of Usefulness of 99Mo-99mTc Generator Using(n,γ)99Mo Developed by Korea Atomic Energy Research ((n,γ)99Mo를 이용한 99Mo-99mTc발생기의 유용성 평가)

  • Seo, Han Kyung;Kim, Jeong Ho;Shim, Cheol Min;Kim, Byung Cheol;Choi, Do Cheol;Gwon, Yong Ju;Park, Yung Sun;Kim, Dong Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.48-52
    • /
    • 2013
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo-^{99m}Tc$ generator is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. So $^{99}Mo-^{99m}Tc$ generator using$(n,{\gamma})^{99}Mo$ is developed by Korea Atomic Energy Research Institute (KAERI). Medicinal availability of this generator is evaluated in this study. Materials and Methods: The radioactivity of $^{99m}Tc$ eluted in generator 1, 2 and 3 unit developed by KAERI was measured. The quality control test of generator such as appearance test, pH test, LAL test, sterility test, chemical impurity (Al) test and radiochemical purity test were performed. Planar and SPECT/CT image sof SD rat (6 weeks, Female) at 2 hr after injection of $^{99m}Tc-HDP$ (hydroxymethylenediphosphonate) (TechneScan HDP, Malinckrodt Medical, Dutch) and $^{99m}Tc-DPD$ (diphosphono-1, 2-propanedicarboxylicacid) (TECEOS, CIS bio international, France) which were labeled with $^{99m}Tc$ eluted in KAERI and commercial generator (40.5 GBq, Malinckrodt Medical, Dutch) using SPECT/CT camera (Symbia, Siemense, Germany) were obtained respectively. Results: The mean radioactivity of $^{99m}Tc$ elution generator 1unit was 4.18 GBq (113 mCi), generator 2 unit was 4.73 GBq (128 mCi) and generator 3 unit was 3.33 GBq (90 mCi). All quality control tests were within normal limit except pyrogentest. Pyrogen test was positive. Planar and SPECT/CT images of rat injected $^{99m}Tc-HDP$ which was labeled with $^{99m}Tc$ eluted in commercial generator show increased uptake in bone, stomach and bowl. Planar images show increased uptake in liver and bone in case of $^{99m}Tc-DPD$. However, images of rat injected $^{99m}Tc-HDP$ and $^{99m}Tc-DPD$ which were labelled $^{99m}Tc$ eluted in KAERI generator show increased uptake in bone, liver and spleen. Conclusion: If shortcoming is removed such as pyrogen and liver appearance, domestic role as an alternative generator is thought to be able to fill and to secure the national medical service by supplying $^{99m}Tc$ when the supply of $^{99m}Tc$ be comes short.

  • PDF

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Study on the determination methods of the natural radionuclides (238U, 232Th) in building materials and processed living products (실내 건축자재 및 생활 가공제품 중 천연방사성핵종(238U, 232Th)의 농도 평가를 위한 분석법 연구)

  • Lee, Hyeon-Woo;Lim, Jong-Myoung;Lee, Hoon;Park, Ji-Young;Jang, Mee;Lee, Jin-Hong
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.149-160
    • /
    • 2018
  • A large number of functional living products are being produced for eco-friendly or health-promoting purposes. In the manufacturing process, such products could be adulterated with raw materials with high radioactivity, such as monazite and tourmaline. Thus, it is essential to manage raw materials and products closely related to the public living. For proper management, an accurate radioactivity data of the processed products are needed. Therefore, it is essential to develop a rapid and validated analytical method. In this study, the concentration of the radioactive $^{238}U$ and $^{232}Th$ in building materials (e.g., tile, cement, paint, wall paper, and gypsum board) and living products (e.g., health products, textiles, and minerals) were determined and compared by ED-XRF and ICP-MS. By comparing the results of both methods, we confirmed the applicability of the rapid screening and precise analysis of ED-XRF and ICP-MS. In addition, $^{238}U$ and $^{232}Th$ levels were relatively lower in building materials than in living products. Particularly, $^{232}Th$ content in 6 of 47 living products exceeded (maximum $8.2Bq{\cdot}g^{-1}$) the standard limit of $^{232}Th$ content in raw material ($1.0Bq{\cdot}g^{-1}$).

Status of a national monitoring program for environmental radioactivity and investigation of artificial radionuclide concentrations (134Cs, 137Cs, 131I) in rivers and lakes (방사성물질 측정망 현황 및 하천·호소 내 인공방사성물질 (134Cs, 137Cs, 131I) 조사)

  • Kim, Jiyu;Jung, Hyun-ji;An, Mijeong;Hong, Jung-Ki;Kang, Taegu;Kang, Tae-Woo;Cho, Yoon-Hae;Han, Yeong-Un;Seol, Bitna;Kim, Wansuk;Kim, Kyunghyun
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.377-384
    • /
    • 2015
  • A survey of the artificial radionuclides in rivers and lakes was conducted to investigate their levels in surface water. Water samples were collected at 60 points and analyzed by gamma-ray spectrometry with a measurement time of 10,000 seconds for 134Cs, 137Cs, and 131I. The obained values were lower than MDA for all points, except one point for 131I that was 0.533±0.058 Bq/L. 131I is known as a radioactive material that occurs frequently in sewage treatment plants. Because it is often used for medical treatments and subject to spreading into the environment due to the excretion from the patients. For the point where 131I was detected, we conducted additional investigation on the upstream river point and the effluent points of nearby sewage treatment plant to find the source of 131I. 131I was not detected at the upstream points of one of the upstream sewage treatment plants but found at the downstream points with the level being 0.257±0.034 to 0.799±0.051 Bq/L, proving the sewage treatment plant was the 131Isource.

Release Characteristics of Fission Gases with Spent Fuel Burn-up during the Voloxidation and OREOX Processes (사용후핵연료의 연소도 변화에 따른 산화 및 OREOX 공정에서 핵분열기체 방출 특성)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.39-52
    • /
    • 2007
  • Quantitative analysis on release behavior of the $^{85}Kr\;and\;^{14}C$ fission gases from the spent fuel material during the voloxidation and OREOX process has been performed. This thermal treatment step in a remote fabrication process to fabricate the dry-processed fuel from spent fuel has been used to obtain a fine powder The fractional release percent of fission gases from spent fuel materials with burn-up ranges from 27,000 MWd/tU to 65,000 MWd/tU have been evaluated by comparing the measured data with these initial inventories calculated by ORIGEN code. The release characteristics of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation process at $500^{\circ}C$ seem to be closely linked to the degree of conversion efficiency of $UO_2\;to\;U_3O_8$ powder, and it is thus interpreted that the release from grain-boundary would be dominated during this step. The high release fraction of the fission gas from an oxidized powder during the OREOX process would be due to increase both in the gas diffusion at a temperature of $500^{\circ}C$ in a reduction step and in U atom mobility by the reduction. Therefore, it is believed that the fission gases release inventories in the OREOX step come from the inter-grain and inter-grain on $UO_2$ matrix. It is shown that the release fraction of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation step would be increased as fuel burn-up increases, ranging from 6 to 12%, and a residual fission gas would completely be removed during the OREOX step. It seems that more effective treatment conditions for a removal of volatile fission gas are of powder formation by the oxidation in advance than the reduction of spent fuel at the higher temperature.

  • PDF