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Abstract

Studies were conducted to select the candidate buffer material for a high-level waste (HLW)
repository in Korea. This paper presents the hydraulic properties, the swelling properties, the thermal
properties, and the mechanical properties as well as the radionuclide release-retarding capacity of
Kyungju bentonite as part of those studies. Experimental results showed that the hydraulic
conductivities of the compacted bentonite were very low and less than 10'm/s. The values
decreased with increasing the dry density of the compacted bentonite. The swelling pressures were in
the range of 0.66 MPa to 14.4 MPa and they increased with increasing the dry density. The thermal
conductivities were in the range of 0.80 kcal/mh°C to 1.52 kcal/mh°C. The unconfined compressive
strength, Young's modulus and Poison’s ratio showed the range of 0.55 MPa to 8.83 MPa, 59 MPa
to 1275 MPa, and 0.05 to 0.20, respectively, when the dry densities of the compacted bentonite
were 1.4 Mg/m3 to 1.8 Mg/m3. The diffusion coefficients in the compacted bentonite were measured
under an oxidizing condition. The values were 1.7 x 107° m2/s to 3.4 x1071° m2/s for electrically
neutral tritiurm (H-3), 8.6 x 10 m2/s to 1.3 x 10 m2/s for cations (Cs, Sr, Ni), 1.2 x10™* m%s to
9.5 x 101! m?/s for anions (I, Tc), and 3.0 x10-14 m?/s to 1.8 x 10" m2/s for actinides (U, Am),
when the dry densities were in the range of 1.2 Mg/m3 to 1.8 Mg/m3. The obtained results will be
used in assessing the barrier properties of Kyungju bentonite as a bulfer material of a repository in

Korea.
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1. Introduction

A HLW repository in Korea is constructed in a
bedrock of several hundred meters in depth [1]. The
HLWs are encapsulated in disposal containers,
which are deposited into boreholes on the floor of
the emplacement rooms. The gap between the
container and the wall of a borehole is then filled
with a buffer material and the inside space of the
emplacement rooms with a backfill material.

In this design concept, the buffer plays the roles
of minimizing the water flux into the repository and
restricting the release of radionuclides into the host
environment. It also dissipates the decay heat from
waste into the surrounding rock to avoid the
possibility of thermal stress on the container and a
high temperature resulting in the loss of the
desirable functions of the buffer. Moreover, it
supports the container and waste from external
mechanical stress.

Bentonite has been favored as a candidate buffer

material in many countries because it has low
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hydraulic conductivity, high sorption capacity, self-
sealing characteristics, and durability in nature [2].
The design concept of a Korean repository as well is
considering the use of domestic bentonite as the
buffer material [1].

The present study, in this connection,
investigates the hydraulic-thermal-mechanical
properties and radionuclide release-retarding
capacity of Kyungju bentonite to see how well the
bentonite meets the functional criteria of a buffer for

a constituent barrier of repository.

I1. Kyungju Bentonite

In Korea, the bentonite is produced mainly from
tertiary sediments in the southeastern area of the
peninsula. The Kyungju bentonite used in this study
is a product by the Taekwang Chemical Co., which
was taken from Jinmyeong mine located in Kyungju,
Kyungsangbuk-do. It was dried below 110°C,
pulverized, and passed through No. 200 of

ASTM(American Society for Testing and
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Table 1. Chemical composition of the bentonite.

Chemical Constituent SiO2  AlO3

Fe O3

Ca0 MgO KO Na,O FeO SO3

TiO;
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Figure 1.X-ray diffraction pattern of the bentonite.

Materials)standard sieves. It is similar to those used
in the previous studies [3] although the mining
companies are different. The X-ray diffraction
pattern is shown in Fig. 1 and the results of
SEM(Scanning Electron Microscope) and
EDX(Energy Dispersive X-ray) analysis in Fig. 2
[13]. The bentonite contains montmorillonite (70%}),
feldspar (29%), and small amounts of quartz ( ~
1%), and its chemical composition is listed in Table
1. It has a cation-exchange capacity of 57.6

meq/100g
HI. Hydraulic Properties

The hydraulic conductivities in water-saturated
bentonites with the dry densities of 1.4 Mg/m3 to 1.8
Mg/m3 were measured. They were very low and less
than 10-1! m/s {4]. It isassumed that the high
swelling potential of the bentonite contributes
significantly to the development of low resuitant
hydraulic conductivities. The hydraulic conductivities
decreased with an increasing dry density of the
bentonite. The logarithm of the hydraulic
conductivity at 20°C versus the dry density of the
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{a)SEM micrograph

{b) EDX pattern
Figure 2. Results of SEM and EDX analysis for the bentonit

bentonite has been plotted in Figure 3. The relation
between the logarithm of the hydraulic conductivity
and the dry density of the bentonite can be fitted to
a straight line expressed as follows:

logK=4.07thod-6.13 (@t 20°C) .....creveee

The hydraulic conductivities of bentonite with
dry densities of 1.4 Mg/m3, 1.6 Mg/m3 and 1.8
Mg/m? as a function of temperature are presented in
Figure 4 to Figure 6. As shown in these figures, the
hydraulic conductivities increase with an increasing
temperature. The hydraulic conductivities of the
bentonite with dry densities of 1.4 Mg/m3 to 1.8
Mg/m? at a temperature of 150°C are up to about
one order of magnitude higher than the hydraulic
conductivities at 20°C. The change of hydraulic
conductivities in the bentonite samples at the
elevated temperatures is attributable to the changes
in the viscosity factor [5]. Although the hydraulic
conductivity increases with temperature, the
experimental results also indicate that the hydraulic
conductivities of the compacted bentonite with dry
densities of 1.6 and 1.8 Mg/m3 are still low and are
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Figure. 3. Hydraulic conductivity versus the dry density
of compacted benonite at 20°C
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Figure 5. Hydraulic conductivity of compacted bentonite
with a dry density of 1.6 Mg/m? at different
temperatures (symbols: measured over different
samples)

in the order of 102 m/s even at a temperature of
150 ¢.

IV. Swelling Properties

The free swell index of the Kyungju bentonite
measured by the Forster's method was 89.1 + 2.8
ml/10g of dry bentonite. The typical swelling
pressure characteristics of the compacted bentonite
at 20°C are presented in Figure 7 [6]. The swelling
pressure developed rapidly over the early period,

and then reached a nearly constant value after 15
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Figure 4. Hydraulic conductivity of compacted bentonite
with a dry density of 1.4 Mg/m3 at different
temperatures (symbols: measured over different

samples)
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Figure 6. Hydraulic conductivity of compacted bentonite
with a dry density of 1.8 Mg/m3 at different

temperatures (symbols: measured over different
samples)

days. The transient behavior of the swelling pressure
can be explained by the changes in the fabric
structure of the bentonite and moisture redistribution
[7). The swelling pressures were measured after 30
days assuming a steady state, and the vertical
swelling pressures were found to be higher than the
horizontal ones suggesting an anisotropic structure
of the compacted bentonite. When the dry densities
were 1.4 to 1.8 Mg/m3, the swelling pressures were
in the range of 6.6 kg/cm? to 143.5 kg/cm? and
increased with an increasing dry density (Figure 8).

The dependency of the swelling pressures on the dry
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Figure 7. Typical swelling p: develop
the compacted bentonite at 20°C.
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Figure 9. Swelling pressure of compacted bentonite with a
dry density of 1.4 Mg/m3 at different
temperatures.

density was more sensitive in a higher dry density.
The swelling pressures of the bentonite for dry
densities of 1.4 Mg/m3 and 1.6 Mg/m3 in the range
of temperatures from 20°C to 80°C are 12 kg/cm? to
18 7 kg/cm? and 46.2 kg/cm? to 51.2 kg/cm?,
respectively (Figure 9 and 10), although there is an
outlier of more than 60 kg/cm? for a dry density of
1.6 Mg/m3 at 40°C which is a possible experimental
deviation [8]. As shown in the figures, the swelling
pressures of the compacted bentonite increased with
increasing temperature, but the change was not

large. This phenomenon can be explained by the
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Figure 10. Swelling pressure of compacted bentonite with
a dry density of 1.6 Mg/m3 at different
temperatures.

changes of the hydration pressure, osmotic pressure

and pore water pressure with increasing

temperature. The hydration pressure decreases
rapidly by increasing the temperature because of
the reduction of the water molecular layer on the
surface of the bentonite [9]. On the other hand, the
osmotic pressure increases due to the reduction of
the thickness of the electric double layer [9, 10] and
the pore water pressure is also increased due to the
differential expansion of the pore water and the
skeleton [11, 12]. The latter two effects almost

exactly counterbalance the former. The
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Table 2. Thermal conductivities of the compacted bentonite

Vol. 2(2). p.87-96, June 2004

Specimen, | Dry density, Water Degree of | Thermal Specimen
No. g/em® content, | saturation, | conductivity, temperature
% % Kcal/mh°C

1 18 15.0 77.8 1.312
2 1.8 17.2 89.1 1.313 23°C
3 1.8 19.0 98.9 1.520
4 16 17.2 65.5 1016

| 5 16 26.0 99.5 1.273
6 14 17.2 489 0.801
7 14 34.6 98.8 1.045

Table 3. Unconfined compressive strength, Young’s
modulus and Poison’s ratio for the compacted

bentonite
Dry density |Water Content | Cohesion |Internal friction
{g/em?®) (%) (kPa) | angle{degree)
18 17 1100 50
1.6 17 1000 37
14 17 500 27 I

experimental results showed that the influence of the
temperature on the swelling pressure is not
important if the maximum temperature is
maintained below 100°C

V. Thermal Properiies

The thermal conductivities of the Kyungju
bentonite were measured using a Quick Thermal
Conductivity Meter [13], and the results are shown
in Table 2. The thermal conductivities are in the
range of 0.80 to 1.52 kcal/mh°C in the case of the
dry density of 1.4 to 1.8 Mg/m3. The thermal
conductivity increases by increasing the dry density

and the water content of the bentonite.

V1. Mechanical Properties

The unconfined compressive strength, Young’s

modulus, Poison’s ratio, and shear properties of the

Table 4. shear properties of the compacted bentonite

Dry | Water Unconﬁnfad Young's Poisson’s
density|Content] compressive | modulus ratio
(gfem®)| (%) |Strength(MPa)} (x 102MPa)

14 17 0.55 0.59 0.05

1.6 17 490 7.84 0.20

17 4.90 5.88 0.18

1.8 17 7.84 10.79 0.21

compacted Kyungju bentonite were measured [14].
The compaction test was performed using the
ASTM D 1557-78 Method A [15]. The dry density-
water content relationships are presented in Figure
11. This compaction curve shows that, as the
molding water content is increased, the dry density
increases to a maximum value and then decreases.
The addition of water increases the amount of free
water in the voids. This decreases the intergranular,
or interped, shearing resistance and aid compaction.
The stress, the axial strain and the lateral strain for
the compacted bentonite were measured using the
unconfined compression tester {Material Test
System 815, USA). The stress-strairelationship for the
bentonite specimen is shown in Figure 12. Young’s
module is the tangent modulus corresponding to 40
% of the curve (vertical stress), and the Poisson’s
ratio is a ratio between the axial strain and the
lateral strain. The results are listed in Table 3. The

shear strength of the compacted bentonite was

-92-
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measured using the triaxial compression test under an
unconsolidated-undrained condition{Figure 13). The
shear properties of tcompacted bentonites are
summarized in Table 4. The consolidation tests were
performed by the oedometer (ELX, UK) using the
applied load of 200 kN/m2, 400 kN/m2, 800 kIN/m2
and 1,600 kIN/m2, respectively. The coefficient of the
volume change and the coefficient of the
consolidation are in the range of 0.00249 to
0.02142 m2/MN and 0.018 to 0.115 m?/year,

respectively.

VII. Radionuclide Release-Retarding Capacity

One of the major functions of a buffer from the
chemical point of view is to retard the release of
radionuclides from the wastes to the surrounding
environment. Previous hydraulic tests [4] with

Kyungju bentonite revealed that the hydraulic
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diffusion coefficients

conductivities were below 10 mys for the compacted
bentonite with a dry density of more than 1.6 Mg/m3.
If such a highly compacted bentonite is employed for
the buffer of a repository, the advection and
dispersion can virtually be ignored and thus the
transport mechanism of the radionuclide will be
controlled by diffusion, as reported in other papers
16, 17}. Determining the diffusion coefficient and
understanding the diffusion behavior of the
radionuclide in compacted bentonite, therefore, is
required for the assessment of the radionuclide release
through the buffer of the repository.

Measurements of the diffusion coefficients were
conducted by either an in-diffusion test or a
through-diffusion test. Literature [18] reported that
these two diffusion tests gave negligible differences
in the values of the diffusion coefficient. In the in-
diffusion test, two sections of bentonite plug are

saturated with solutions and a tracer solution is
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added to one of the bentonite sections. The sections
are compacted to the same density and brought into
contact with each other in the diffusion cell, as
shown in Figure 14(a). After a predetermined
diffusion period, the bentonite specimens are
removed from the diffusion cell and sectioned into
slices. The concentration profile in the bentonite
plug and subsequently the diffusion coefficients are
determined [19]. In the through-diffusion test, a
compacted bentonite plug is sandwiched between
two reservoirs, as shown in figure 14(b). Initially,
one of the reservoirs contains a tracer, whereas the
other one is free of a tracer. The tracer penetrates
from the high concentration reservoir through the
bentonite specimen into the other reservoir. The
tracer concentration is monitored in an initially
trace-free solution. This provides a cumulative
amount of tracer diffused through the bentonite
plug. When the amount of radionuclide transported
through the plug is at the stage of a steady state, the
apparent diffusion coefficients are determined by
comparing the theoretical values and experimental
breakthrough curve at the steady state of the
diffusion [20].

The experimental measurement of the diffusion
coefficients have been conducted for 8 major
radionuclides(i.e., neutral H3, cations Cs, Sr, Ni;
anions I, Tc; actinides U, Am). The measurements
were conducted under an oxidizing condition. The
dry densities of the compacted bentonite were given
in the range of 1.2 Mg/m® to 1.8 Mg/m®, and the
temperature was maintained at 20°C. Table 5 lists
the measured diffusion coefficients. As shown in the
table, under oxidizing conditions, the diffusion
coefficients were 1.7 x 10"° m%s to 3.4 x10%° m%s
for electrically neutral tritium, 8.6 x 10 m?s to 1.3
% 102 m%s for cations, 1.2 x10™"! m%s to 9.5 x 10
1 m?s for anions, and 3.1 x 10 m¥s to 1.8 x 1013

m?%/s for actinides, when the dry densities were in the

-94-
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Table 5. Apparent diffusion coefficients measured from
diffusion tests.

Flement Dgllcérer:?? (X 1(?132m2/sj me'gmezt:lm
14 343 D
Neutral |Tritium 1.6 2922
' 18 173
Cs 14 0.39 D
1.2 1.32 ™D
St 14 1.28 "
Cation 1.7 1.20
14 0.20 D
Ni 1.6 0.14
1.8 0.086 .
1.2 71.2 D
I 14 58.0
Anion 1.7 125 ”
14 94.6 D
Te 1.6 453
138 346
14 0.177 D
0] 16 0.057
o 18 0.030
Actinides 14 0.0073 D
Am 16 0.0058
1.8 0.0031

(1) Test conditions: domestic bentonite, distilled water, oxidizing
condition
(2) ID: in-diffusion test method, TD: through-diffusion test method

range of 1.2 Mg/m® to 1.8 Mg/m®. The diffusion
coefficient of trittum was similar in the order of
magnitude to the water diffusion coefficient. Cations
had the following order for the value of diffusion
coefficient: Sr > Cs > Ni. The low diffusion
coefficients of nickel could be explained by its
precipitation at the high pH of the solution. lodine
and technetium as anions had the diffusion
coefficients one order of magnitude less than tritium,
which was probably attributed to the anion
exclusion between the anions and bentonite particles
with a negative surface charge [21]. Uranium and
americium of the actinide series were found to have

a wide range of diffusion coefficients. This may be
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attributed mainly to their complex chemistry and
speciation in the water-bentonite system. The
uranium existed largely as an anionic carbonate
complex in the pore solution of the bentonite under
the oxidizing conditions. Its diffusion is expected to
be dependent on the anion-exclusion and the pore
structure of the compacted bentonite, but it was
negligibly affected by the sorption of uranium onto
the bentonite particles [22]. The americium revealed
that the precipitation of the hydrous and carbonate
americium complexes existed at the high pH region
of the solution. It caused much lower diffusion
coefficients than those of the other radionuclides.
For the americium, the diffusion seems to be
dependent on the precipitation, the sorption of
americium onto the bentonite particles as well as the
pore structure of the compacted bentonite. A
combination of these affecting factors could
probably explain the changes in the diffusion
coefficients of the uranium and americium in the

compacted bentonites.

VIII. Conclusions

The studies on Kyungju bentonite gave
experimental data and information which is useful in
assessing its feasibility and suitability as a candidate
buffer material of a Korean repository. The hydraulic
conductivities of the compacted bentonite were very
low and less than 10'm/s above the dry density of
1.6 Mg/m3and they decreased by increasing the dry
density of the compacted bentonite. The swelling
pressures were in the range of 0.66 MPa to 14.4 Mpa
under the given experimental conditions. They were
sensitive to the dry density, but the temperature
change between 20°C and 80°C did not have a large
effect on the swelling pressures.The thermal
conductivities were in the range of 0.80 kcal/mh°C to

1.52 kcal/mh°C. The unconfined compressive

strength, Young’s modulus and Poison’s ratio
showed the range of 0.55 MPa to 8.83 MPa, 59 MPa
to 1275 MPa, and 0.05 to 0.20, respectively, when
the dry densities of the compacted bentonite were
1.4 Mg/m3 to 1.8 Mg/m3. The diffusion coefficients of
the major radionuclides in the compacted bentonite
were 1.7 x 1011 m2/s to 3.4 x 10-1° m¥/s for
electrically neutral tritium, 8.6 x10¥ m?/s to 1.3 x
1012 m2/s for cations, 1.2 x 101! m2/s to 9.5 x 10-
Nm2/s for anions, and 3.0 x 1014 m2/s to 1.8 x1013
m?/s for actinides, when the dry densities were in the
range of 1.2 Mg/m3 to 1.8 Mg/m3.
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