• 제목/요약/키워드: Radio-Frequency plasma

검색결과 227건 처리시간 0.03초

임피던스 정합장치 내 위상센서를 이용한 RF정합 알고리즘 연구 (RF Impedance Matching Algorithm Using Phase Detector)

  • 김황규;양진우;강석호;최대호;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.32-37
    • /
    • 2022
  • As semiconductors become finer, equipment must perform precise and accurate processes to achieve the desired wafer fabrication requirement. Radio frequency power delivery system in plasma system plays a critical role to generate the plasma, and the role of impedance matching unit is critical to terminate the reflected radio frequency power by modifying the impedance of the matching network in the plasma equipment. Impedance matching unit contains one fixed inductor and two variable vacuum capacitors whose positions are controlled two step motors. Controlling the amount of vacuum variable capacitor should be made as soon as possible when the mismatched impedance is detected. In this paper, we present the impedance matching algorithm using the phase sensor.

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.

KVN unveils the plasma physics of AGN

  • Trippe, Sascha
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.51.3-51.3
    • /
    • 2019
  • Its ability to measure the polarization of light at four frequencies makes the KVN a "plasma physics observatory" that can probe the internal physics (e.g., magnetic fields, outflow geometries) of AGN radio jets and cores. We initiated a Key Science Program, the Plasma-physics of Active Galactic Nuclei (PAGaN) project, dedicated to polarimetric monitoring of 14 radio-bright AGN. We have been able to measure the Faraday rotation measure of the cores of our targets as function of frequency; the observed scaling relation is in good agreement with conically expanding outflows to first order. We are further probing a polarized hotspot in the jet of 3C84 and possible systematic differences in the Faraday rotation in BL Lacertae objects and flat spectrum radio quasars.

  • PDF

Radio Frequency Plasma Power변화에 따른 ITO 특성 및 OLED의 광학적 특성 (Optical Properties of Organic Light Emitting Diode and Characteristics of ITO by Variation of Radio Frequency Plasma Power)

  • 기현철;김회종;홍경진;김은미;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.81-85
    • /
    • 2009
  • We has been analysed optical properties of OLED(organic light emitting diode) and characteristics of ITO(Indium Tin Oxide) in terms of $O_2$ plasma treatment for manufacturing high efficiency OLED, RF power of $O_2$ plasma was changed 25, 50, 100, 200 W. $O_2$ gas flow, gas pressure and treatment time were fixed. Sheet resistance and surface roughness of ITO were measured by Hall-effect measurement system and AFM, respectively. The ranges of sheet resistance and surface roughness were $5.5{\sim}6,06\;{\Omega}$ and $2.438{\sim}3.506\;nm$ changing of RF power, respectively, PM(Passive Matrix)OLED was fabricated with the structure of ITO(plasm treatment)/TPD($400\;{\AA}$)/$Alq_3(600\;{\AA})$/LiF($5\;{\AA}$)/Al($1200\;{\AA}$). Turn-on voltage of PMOLED was 7 V and luminance was $7,371\;cd/m^2$ at the RF power of 25 W, $O_2$ plasma treatment of ITO surface was result in lowering the operating voltage and improving luminance of PMOLED.

RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구 (Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process)

  • ;양승민;이민규;;김정한
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

Guided Modes along Dispersive Double Negative (DNG) Metamaterial Columns

  • 김기영;태홍식;이정해
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.59-63
    • /
    • 2003
  • Modal properties of guided waves along circular dispersive double negative (DNG) index metamaterial rod waveguides are numerically investigated. Identical forms of dispersive dielectric and magnetic material constants are used for simplicity. For degenerated azimuthally symmetric mode, a multimode region, a single mode region, a band gap region and a forbidden region are found which cannot be observed in the case of the conventional dielectric rod waveguide. As the normalized frequency goes down, discrete guided modes are continuously generated, which is a reverse property of conventional dielectric rod waveguide. Also, there are high-frequency cutoffs, which have been generally examined in dispersive circular geometries such as a plasma column or a plasma Goubau line. In the single mode region, both the low- and high-frequency cutoffs are existed where the propagation constants are continued between the guided oscillating and surface modes.

  • PDF

Harmonic plasma emission by electron beam - plasma interaction

  • Rhee, Tong-Nyeol;Ryu, Chang-Mo
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.43.1-43.1
    • /
    • 2009
  • Electromagnetic radiation at the plasma frequency and its second harmonic, the so-called plasma emission, is fundamental process responsible for solar type II and III radio bursts. There have also been occasional observations of higher-harmonic plasma emissions in the solar-terrestrial environment. We will present that the simulation effort on characterizing the electron beam-generated plasma emission process at POSTECH. We have developed fully electromagnetic particle-in-cell (PIC) simulation code with three dimensions. We simulated harmonic plasma emission with various beam condition. Qualitative comparison with the traditional plasma frequency and second harmonic radiation theory is in good agreement. Higher harmonic emissions agree with the theory of coalescence of Langmuir and harmonic EM wave.

  • PDF

고주파 유도방전 플라즈마 특성에 관한 연구 (A Study on the Characteristics of the Radio-Frequency Induction Discharge Plasma)

  • 박원주
    • 조명전기설비학회논문지
    • /
    • 제13권3호
    • /
    • pp.34-39
    • /
    • 1999
  • 본 연구에서는 랑그뮤어 푸로브법을 이용요하여 고주파 유도결합 플라즈마에서 전자온도와 전자밀도를 측정하였다. 실험의 공통조건은 압력 10∼40[mTorr], 입력파워는 100∼600[W]이고, 공간분포는 측정에서의 아스펙트비(R/L)는 2로하였다. 전자온도와 전자밀도의 의존성을 측정한 결과 입력파워에서는 전자온도는 약간 증가하는 경향을 보이고 있지만 전자말도는 입력파워가 100∼250[W]까지는 증가율이 완만하고 450[W]에서 포화하는 것을 알수 있었다. 압력에 대한 의존성은 압력이 낮을수록 높은 값을 나타내고 전자밀도에서는 압력이 증가함에 따라 증가하는 것을 알 수 있었다. 전자온도의 반경방향의 공간분포는 석영창 부근에서 기판쪽으로 갈수록 감소되는 경향이 있다. 전자밀도에서는 플라즈마 중심부에서 석영창 쪽으로 약간 이동한 위치에서 피크의 값을 가지고, 석영창과 기판쪽에서는 그 값이 감소함을 볼 수 있었다. 전자온도의 축방향의 공간분포는 석영창 부근에서 기판쪽으로 감소되는 경향이 있다. 또, 전자밀도는 플라즈마 중심부에서 석영창 쪽으로 약간 이동한 위치에서 피크의 값을 가지고, 석영창과 기판쪽에서는 그 값이 감소함을 볼 수 있었다. 이상의 결과들은 유도방전플라즈마의 메카니즘의 체계적인 이해에 기여할 수 있을 것이다.

  • PDF

고주파 유도결합 플라즈마의 전자에너지 분포 계측 (II) (Measurement of Electron Energy Distribution of the Radio-Frequency Inductively Coupled Plasma)

  • 황동원;하장호;전용우;최상태;박원주;이광식;이동인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1803-1805
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rf power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution electron temperature and electron density and electron energy distribution function were measured for discharge with same aspect ratio(R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, then we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF