DOI QR코드

DOI QR Code

Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process

RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구

  • Adomako, Nana Kwabena (Department of Materials Science & Engineering, Hanbat National University) ;
  • Yang, Seungmin (Additive Manufacturing R&D group, Korea Institute of Industrial Technology Gangwon Regional Division) ;
  • Lee, Min Gyu (Ulitmate Fabrication Technology group, Korea Institute of Industrial Technology Daegyeong Regional Division) ;
  • Reddy, N.S. (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Jeoung-Han (Department of Materials Science & Engineering, Hanbat National University)
  • ;
  • 양승민 (한국생산기술연구원 강원지역본부 적층성형가공그룹) ;
  • 이민규 (한국생산기술연구원 대경지역본부 극한가공기술그룹) ;
  • ;
  • 김정한 (한밭대학교 신소재공학과)
  • Received : 2019.08.02
  • Accepted : 2019.08.19
  • Published : 2019.08.28

Abstract

In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

Keywords

References

  1. S. E. Back, K.-H. Noh, J. Y. Park, Y. J. Cho and J. H. Kim: J. Korean Powder Metall. Inst., 25 (2018) 220. https://doi.org/10.4150/KPMI.2018.25.3.220
  2. K. Euh, B. Arkhurst, I. H. Kim, H.-G. Kim and J. H. Kim: Met. Mater. Int., 23 (2017) 1063. https://doi.org/10.1007/s12540-017-6832-4
  3. B. M. Arkhurst, J.-J Park, C.-H. Lee and J. H. Kim: Korean J. Met. Mater., 55 (2017) 550. https://doi.org/10.3365/KJMM.2017.55.8.550
  4. T. Park and J. H. Kim: J. Korean Powder Metall. Inst., 25 (2018) 327. https://doi.org/10.4150/KPMI.2018.25.4.327
  5. N. K. Adomako, J. O. Kim, S. H. Lee, K. H. Noh and J. H. Kim: Mater. Sci. Eng., A, 732 (2018) 378. https://doi.org/10.1016/j.msea.2018.07.015
  6. J. B. Seol, D. Haley, D. T. Hoelze and J. H. Kim: Acta Mater., 153 (2018) 71. https://doi.org/10.1016/j.actamat.2018.04.046
  7. N. K. Adomako, J. O. Kim and J. H. Kim: Mater. Sci. Eng., A, 753 (2019) 208. https://doi.org/10.1016/j.msea.2019.03.036
  8. N. K. Adomako, S. Noh, C.-S. Oh, S. Yang and J. H. Kim: Mater. Res. Lett., 7 (2019) 259. https://doi.org/10.1080/21663831.2019.1596989
  9. B. M. Arkhurst and J. H. Kim: Met. Mater. Int., 24 (2018) 464. https://doi.org/10.1007/s12540-018-0071-1
  10. S. Yang, J.-N. Gwak, J.-Y. Yun, J.-Y. Kim, S. Park, H.-S. Kim, Y.-J. Kim and Y.-H. Park: J. Korean Powder Metall. Inst., 20 (2013) 467. https://doi.org/10.4150/KPMI.2013.20.6.467
  11. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach and A. T. Clare: Mater. Des., 95 (2016) 431. https://doi.org/10.1016/j.matdes.2016.01.099