• Title/Summary/Keyword: Radio Frequency communication

Search Result 1,090, Processing Time 0.03 seconds

Highly Miniaturized On-Chip $180^{\circ}$ Hybrid Employing Periodic Ground Strip Structure for Application to Silicon RFIC

  • Yun, Young
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • A highly miniaturized on-chip $180^{\circ}$ hybrid employing periodic ground strip structure (PGSS) was realized on a silicon radio frequency integrated circuit. The PGSS was placed at the interface between $SiO_2$ film and silicon substrate, and it was electrically connected to top-side ground planes through the contacts. Owing to the short wavelength characteristic of the transmission line employing the PGSS, the on-chip $180^{\circ}$ hybrid was highly miniaturized. Concretely, the on-chip $180^{\circ}$ hybrid exhibited good radio frequency performances from 37 GHz to 55 GHz, and it was 0.325 $mm^2$, which is 19.3% of a conventional $180^{\circ}$ hybrid. The miniaturization technique proposed in this work can be also used in other fields including compound semiconducting devices, such as high electron mobility transistors, diamond field effect transistors, and light emitting diodes.

Frequency Multiplier Using Diplexer based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 다이플렉서를 이용한 주파수 체배기)

  • Kim, Seung-Hwan;Kim, Young;Lee, Young-Soon;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.66-73
    • /
    • 2010
  • This paper proposes the frequency multiplier using diplexer based on CRLH transmission line with dualband characteristic. The diplexer is separated the output signals of harmonic generator, which is generated the harmonic signals using nonlinear device. The diplexer consists of the inphase power divider, 0o/90o phase controller and dual-band quadrature hybrid coupler. This send out the selecting output signals of the harmonic signals and suppresses out of signals. To validate a function of multiplier, the harmonic generator and diplexer with 2 GHz and 3 GHz operating frequency range is implemented. As a result, the proposed frequency multiplier is operated normally.

Development and Test Result of Fast Digital Conversion System with Variable Sampling Frequencies for Astronomical Radio Siginal Processing (우주 전파 신호 처리용 가변 샘플링 고속 디지털 변환 장치 개발)

  • Kang, Yong-Woo;Song, Min-Gyu;Kim, Hyo-Ryoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1175-1182
    • /
    • 2021
  • The receiver of each radio telescope of KVN, has a sampler that converts astronomical radio signal to digital data. The ability of this sampler (the bandwidth, sampling frequency, and sampling bits) is improved by sqrt(n), if the bandwidth is increased by n times, and the number of observable objects increases exponentially in the case of continum spectrum radio sources. As the bandwidth increases, there are the more spectrum lines that can be simultaneously monitored in the radio source. This will greatly expand the research area in astronomical radio observation. For this reason, we are trying to independently develop the technology of the fast digital sampler. Therefore, based on the research experience and technology accumulated so far, An ability of sampling up to 3.5 GHz, that can vary the sampling frequency and can observe in a wider band, was designed and made for proto-type. In this study, we introduce the development details and test results for new sampling system.

Implementation of PLC System based on Spectrum Sensing Function (스펙트럼 센싱 기반 전력선 통신 시스템 구현)

  • Lee, Hyun-So;Nam, Yun-Ho;Hong, Moo-Hyun;Jang, Dong-Won;Lee, Young-Hwan;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.37-45
    • /
    • 2009
  • Today, Internet service is a most important Information Source. So, the Power Line Communication has been achieved to offer Internet service to Last-Mile area. But, Power Line is not suitable for communication, So, electromagnetic wave is generated from Power Line during flow of communication information. And the electromagnetic wave is interfered with Wireless Communication Service using the same frequency range. In this paper, the Notch Filter and the Spectrum Sensing technology are proposed to reduction of interference between Power Line Communication and Wireless Communication Service. The Spectrum Sensing technology is the core technology of the Cognitive Radio (CR) system. CR is the technology that temporarily allocates the frequency bandwidth by scanning surrounding wireless environments to keep licensed terminals and search the unused frequency bandwidth. The proposed emulator is implemented with Spectrum Sensing and Notch Filter system using Embedded Board.

A Study on the effect of high-performance frequency hopping radio system to next-generation aircraft and improvement Anti-jamming communication (고성능 주파수 도약 공지통신 무전기의 차세대 항공기 적용과 항공기 항재밍 통신장비 개량에 따른 효과 연구)

  • Lee, Kwangyull;Yong, Taeho;Ahn, Seungbeom;An, Kyeongsoo;Jang, Indong;Han, Chulhee
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • In wartime conditions, the communication system of military aircraft is exposed to jamming, and it is necessary to mount communication equipment with high anti-jamming performance in order to perform air operations smoothly even in an environment where jamming attempts are made. In this paper, we check in detail the jamming and anti-jamming technology that can be applied to wireless communication, and the data disclosed on the difference in specifications of the next-generation anti-jamming radio with frequency hopping method and the improvement of anti-jamming performance according to these changes. It was briefly analyzed within the scope. In addition, the points to be considered when designing a new domestic aircraft and the possibility of installing the next-generation anti-jamming communication equipment on the currently operating aircraft were confirmed, and the tactical usefulness of improving the anti-jamming capability of the next-generation anti-jamming communication equipment was confirmed.

Analysis of DDS Frequency Characteristic for Polar Transmission based on Software Defined Radio (SDR 기반 Polar 송신 변환부의 DDS 주파수 특성 분석)

  • Kim, Min-Soo;Lee, Kun-Joon;Ha, Sung-Jae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1181-1187
    • /
    • 2014
  • In this paper, we implemented polar transmitt converter based on software for next generation digital wireless communication system. The implemented converter converted from rectangular to polar by CORDIC algorithm, and be made up of sweep for DDS output frequency using software control. The implemented converter shows can frequency control up to 1.16GHz within DDS frequency control range by software control. it means that transmitter can be control of varied blocks such as gain, phase, output and etc.. The implemented converter can be applied digital wireless communication system based on SDR.

Outage Analysis of OFDM-Based Cognitive AF Relay Network in the Presence of Narrowband Interference

  • Rajkumar, Samikkannu;Senthilkumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.460-470
    • /
    • 2015
  • Orthogonal frequency-division multiplexing (OFDM) is one of the most widely used technologies in current wireless communication systems and standards. Cognitive radio (CR) provides a robust solution to the problem of spectrum congestion as it offers opportunistic usage of frequency bands that are not occupied by primary users. Due to the underlying sensing, spectrum shaping, scaling, and interoperable capabilities of OFDM, it has been adapted as a best transmission technology for CR wireless systems. However, the performance of an OFDM-based CR wireless system is affected by the existence of narrowband interference (NBI) from other users. Further, due to carrier frequency offset in NBI sources, NBI energy may spread over all subcarriers of an OFDM signal. In this paper, a fixed Amplify-and-Forward (AF) relay that operates at a frequency band that is different from that of direct mode is introduced to suppress the effect of NBI. Analytical expressions are derived for outage probability in direct, AF-relay, and incremental relaying modes. The outage performance of the proposed AF relay-based CR network is proven to be better than that of direct mode.

A Differential Voltage-controlled Oscillator as a Single-balanced Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • This paper proposes a low power radio frequency receiver front-end where, in a single stage, single-balanced mixer and voltage-controlled oscillator are stacked on top of low noise amplifier and re-use the dc current to reduce the power consumption. In the proposed topology, the voltage-controlled oscillator itself plays the dual role of oscillator and mixer by exploiting a series inductor-capacitor network. Using a 65 nm complementary metal oxide semiconductor technology, the proposed radio frequency front-end is designed and simulated. Oscillating at around 2.4 GHz frequency band, the voltage-controlled oscillator of the proposed radio frequency front-end achieves the phase noise of -72 dBc/Hz, -93 dBc/Hz, and -113 dBc/Hz at 10KHz, 100KHz, and 1 MHz offset frequency, respectively. The simulated voltage conversion gain is about 25 dB. The double-side band noise figure is -14.2 dB, -8.8 dB, and -7.3 dB at 100 KHz, 1 MHz and 10 MHz offset. The radio frequency front-end consumes only 96 ㎼ dc power from a 1-V supply.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF