• Title/Summary/Keyword: Radical species

Search Result 1,068, Processing Time 0.027 seconds

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

Protective Effects of Green Tea Catechins and (-)-Epigallocatechin gallate on Reactive Oxygen Species-Induced Oxidative Stress (녹차카테킨과 에피갈로카테킨갈레이트의 산화적 스트레스에 대한 억제효과)

  • 윤여표;박종범;허문영
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • Green tea catechins (GTC) and its major component, (-)-epigallocatechin gallate (EGCG) were studied for their protective effects against reactive oxygen species (ROS)-induced oxidative stress. GTC and EGCG skewed the strong antioxidative effects on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. They also protected $H_2O$$_2$- or KO$_2$-induced cytotoxicity in CHL cells or mouse splenocytes. These results indicate that GTC and EGCG are capable of protecting the lipid peroxidation, flee radical generation and cytotoxicity induced by ROS. The mechanism of inhibition in ROS-induced cytotoxicity may be due to their antiofidative and free radical scavenging properties. Therefore, GTC and EGCG may be useful chemopreventive agents by protecting the free radical generation which are involved in cancer and aging.

  • PDF

Electrochemical and Spectroelectrochemical Behaviors of Vitamin K1/Lipid Modified Electrodes and the Formation of Radical Anion in Aqueous Media

  • Yang, Jee-Eun;Yoon, Jang-Hee;Won, Mi-Sook;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3133-3138
    • /
    • 2010
  • The electrochemical properties of the liposoluble vitamin $K_1$ adsorbed on bare and lipid coated glassy carbon electrodes (GCEs) were studied in unbuffered and well buffered aqueous media. The reduction products of vitamin $K_1$ were characterized by employing cyclic voltammetry and the in situ UV-visible spectroelectrochemical technique. The radical species of vitamin $K_1$ cannot be observed at the bare GCEs in well buffered media. The formation of the anion radical of vitamin $K_1$ was observed in unbuffered solutions above pH 5.9 or at the lipid coated GCE in a well-buffered solution. UV-visible absorption bands of neutral vitamin $K_1$ were observed at 260 nm and 330 nm, and a band corresponding to the anion radical species was observed at 450 nm. The derivative cyclic voltabsorptometric (DCVA) curves obtained for electrochemical reduction of vitamin $K_1$ confirmed the presence of both neutral and anion radical species. The anion radical of vitamin $K_1$ formed at the hydrophobic conditions with phosphatidylcholine (PC) lipid coated electrode was stable enough to be observed in the spectroelectrochemical experiments.

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Artificial Radical Generating and Scavenging Systems: Synthesis and Utilization of Photo-Fenton Regent in Biological Systems

  • Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.138-141
    • /
    • 2002
  • A photo-labile compound which is bioinactive but, upon irradiation with light, yields bioactive species is called as "caged compound". Photolysis of caged compounds generating bioactive species, has become a general method to produce a desired amounts of bioactive species in the specific time interval at the desired place or area of the target biological systems. For this purpose, we designed and synthesized caged hydroxyl radical., "Photo-Fenton Reagent" NP-IIl. NP-IIl has a strong absorption maximum at 377 nm and yields hydroxyl radicals upon UV light irradiation. The antioxidant activity of the ${\alpha}$ -lipoic acid and other naturally occurring compounds has been examined by using NP-IIl as a molecular probe. For example, upon photoirradiation of NP-lII with BSA or apolipoprotein of human low density (LDL), the significant oxidative modifications were observed in both cases. The oxidation was completely suppressed in the presence of ${\alpha}$-lipoic acid, which clearly demonstrates the strong hydroxyl radical scavenging activity of ${\alpha}$-lipoic acid. Other applications of NP-lII will also be described

  • PDF

Formation of Reactive Oxygen Species and Cr(V) Entities in Chromium(VI) Exposed A549 Cells (크롬 6가 투여 후 A549 세포에서의 Reactive Oxygen Species와 크롬 5가의 발생)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.49-57
    • /
    • 1996
  • The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, $K_2Cr_2O_7$ ) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile flow cytometer was used to detect the formation of reactive oxygen species after $K_2Cr_2O_7$ was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 gM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100 and 200 gM Cr(VI) to the A549 cells in suspension. Two other EPR 'signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. radical value.

  • PDF

Numerical Study on Combustion Charaterestics in a Constant Volume Combustor Having a Radical Injector (라디칼인젝터를 적용한 정적연소기의 연소특성에 관한 계산적 연구)

  • Jo, Sang-Mu;Jeon, Jae-Hyeuk;Jang, In-Sun;Jeong, Sung-Sik;Park, Kweon-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1309-1316
    • /
    • 2003
  • A premixed-compression-ignition engine has been studied to improve the efficiency and to decrease exhaust emissions. However those systems have some difficulties for controlling combustion process. Radical is an activated chemical species formed by a chemical chain reaction between reactant and product. When the chain reactions occur, the energy bond of species is broken easily by the released radicals. The combustion chamber of the premixed-compression-ingnition engine is consist of a main chamber with lean premixture and a subchamber with rich premixture. Those are connected by narrow cylinderical connections. With ignition start in the subchamber, many different kinds of radical is jetted into the main chamber. The premixed gas in main chamber is quickly burned up by the radical ignition in multi-pionts. In this paper, the combustion phenomena in a constant volume combustor having a radical injector are numerically analyzed. The some constants in the reaction rate equation are adjusted by the experimental results tested in the same geometrical chamber. The code is applied on the two combustors in a wide range of equivalence ratio. The results show that the burning time is much shorter in the combustor having radical injector.

A Study on Generative Characteristics of Radicals in Aqueous Solutions of Humic Acids using Electron Spin Resonance (전자기공명기법을 이용한 Humic Acid 용액에서의 라디칼 발생 특성에 관한 연구)

  • Han, Sang-Kuk
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.671-677
    • /
    • 2008
  • We studied to determine quantitatively the radical species generated from humic acid (HA) solutions by irradiation(>400 mn). The formation of radical species from HA solutions was investigated with ESR spectroscopy. We gave ESR spectrum with g-value 2.0048 and line width 0.559mT, coincided with those of the semiquinone radical. 0.1 mg/L HA solution generated the radicals of $1.2{\times}10^{-6}M$, increased with increasing HA concentration. Also, pH and ionic strength effect of the amount of the semiquinone radical generate from HA solution. In this study, we have found that the singlet oxygen affects the semiquinone radicals generation in HA solution.

Quantitative Structure-Activity Relationships for Radical Scavenging Activities of Flavonoid Compounds by GA-MLR Technique

  • Om, Ae-Son;Ryu, Jae-Chun;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • The quantitative structure-activity relationship (QSAR) of a set of 35 flavonoid compounds presenting antioxidant activity was established by means of Genetic Algorithm-Multiple Linear Regression (GA-MLR) technique. Four-parametric models for two sets of data, the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity $(R^2=0.788,\;Q^2_{cv}=0.699\;and\;Q^2_{ext}=0.577)$ and scavenging activity of reactive oxgen species (ROS) induced by $H_2O_2 (R^=0.829,\;Q^2_{cv}=0.754\;and\;Q^2_{ext}=0.573)$ were obtained with low external predictive ability on a mass basis, respectively. Each model gave some different mechanistic aspects of the flavonoid compounds tested in terms of the radical scavenging activity. Topological charge, H-bonding complex and deprotonation processes were likely to be involved in the radical scavenging activity.

The Effect of UV-A and Reactive Oxygen Species on Glycosylation and Fragmentation of Calf Skin Collagen

  • Wan Goo Cho;Sang Jin Kang;Seong Don Hong;Quse Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.107-109
    • /
    • 1993
  • Non-enzymatic glycosylation and fragmentation of collagen molecule were investigated by irradiating Ultraviolet A(UV-A) with or without scavengers of reactive oxygen species (ROS) in the presence of glucose. Non-enzymatic glycosylation was increased by UV-A at high concentration of glucose. It was reduced in the presence of the scavengers of superoxide radical and singlet oxygen, but not reduced in the presence of hydroxy radical scavenger. Fragmentation of collagen was increased by UV-A, but it was decreased in the presence of all ROS scavengers tested. Superoxide radical and singlet oxygen produced by autoxidation of glucose without UV-A may encounter the initial phase of glycosylation. Data presented here suggest that UV-A affects only on the fragmentation process, but all ROS except hydroxy radical act on both processes. It appears that hydroxy radical does not act on the glycosylation process.