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Abstract

The quantitative structure-activity relationship (QSAR)
of a set of 35 flavonoid compounds presenting anti-
oxidant activity was established by means of Genet-
ic Algorithm-Multiple Linear Regression (GA-MLR)
technique. Four-parametric models for two sets of
data, the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radi-
cal scavenging activity (R2=0.788, Q?%.,,=0.699 and
Q%.x=0.577) and scavenging activity of reactive oxy-
gen species (ROS) induced by H,0, (R?=0.829, Q3,,=
0.754 and Q2.,;=0.573) were obtained with low exter-
nal predictive ability on a mass basis, respectively.
Each model gave some different mechanistic as-
pects of the flavonoid compounds tested in terms of
the radical scavenging activity. Topological charge,
H-bonding complex and deprotonation processes
were likely to be involved in the radical scavenging
activity.
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Reactive oxygen species (ROS) include superoxide
anion radical (O,7), singlet oxygen ('0,), hydrogen
peroxide (H,O,), and the most highly reactive hyd-
roxyl radical ( "OH) is derived from the metabolic

reduction of molecular oxygen to highly reactive and
toxic species’.

A number of flavonoids show positive biological or
medicinal effects such as lipooxygenase inhibition?,
chemoprotective effects on colorectal cancer”, anti-
inflammatory activity* and antiparasitic activity”.
Antioxidants can interfere with the oxidation process
by reacting with free radicals, chelating catalytic me-
tals, and also by acting as oxygen scavengers.

QSAR has been often used to find correlations bet-
ween biological activities and physicochemical pro-
perties of compounds®’. The ability of a compound to
act as a free radical scavenger is related to its standard
one-electron reduction potential (E°)*'°, a measure of
the reactivity of an antioxidant as hydrogen or elec-
tron donor. In another words, the electronegativity ot
OH/O™ groups depends on the strength of H-bonding
in phenol/phenolate involved in H-bond complexa-
tion. The O-H BDE (bond dissociation enthalpy) is
mainly governed by the resonance effect of electron-
donating or electron-withdrawing group'!. The singly
-occupied molecular orbital (SOMO) of the 3-OH
radical are localized on the O-atom, whereas SOMO
of the 3’-OH and the 4’-OH radicals are delocalized,
agreeing with high BDE for the first one and low
BDE for the latter two'?. Parameters such as AH;,
HOMO (lowest unoccupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital), and
number of OH groups®, or dipole moment and shape
parameters'® were applied for description of antioxi-
dant activity of flavonoids and other phenolic com-
pounds.

Recently, authors have intensively discussed the
activity due to structural characteristics of flavonoid
antioxidants'*!". The antioxidant activity of depends
on the number of phenolic hydroxyl groups and the
location of the hydroxyl groups. Moreover, the pre-
sence of 2,3-double bond in conjugation with a 4-0xo
function in ring C, 3- and 5-OH groups, 3,5,7-trihyd-
roxy, ortho-catechol group (3’,4’-OH), glycosylation
in the ring and the dihedral angle between the B- and
C-ring are additional determinants for a high antioxi-
dant capacity.
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An easy, rapid and sensitive method for the antioxi-
dant screening is free radical scavenging assay using
1,1-diphenyl-2-picryl hydrazyl (DPPH) radical me-
thod. In the presence of an antioxidant, DPPH radical
obtains one more electron as reactive hydrogen accep-
tor and the absorbance decreases'®!”. QSAR analyses
tor DPPH radical scavenging activities of OH-ben-
zlactones indicated that antioxidant and radical sca-
venging activities could be expressed by the physico-
chemical parameters and the hydrogen bonding?".
However, there has been virtually no enough infor-
mation for the QSAR associated with DPPH radical
scavenging activities.

The aim of the research is to construct the predic-
tive QSAR model for two different radical scavenging
activity data on structurally diverse flavonoid com-
pounds using GA-MRL analysis, and to understand
the different mechanistic features for the radical sca-
venging activity.

QSAR of ROS Scavenging Activity Using
Dragon Descriptors

We investigated the applicability of Dragon descrip-
tors to radical scavenging activity data to construct
the QSAR model. Following descriptor pruning pro-
cedures, four descriptors were selected to build the
tinal QSAR model for the data set, consisting of 29
compounds. In order to investigate the possible exis-
tence of outliers from the 35 compounds which cons-
titute the entire data sets. The LOO procedure indi-
cated that chemicals, no. 7 (Astragalin), 17 (Apigenin)
and 22 (Isoliquiritigenin), were influential outliers and
need to be omitted from the procedure of regression
analysis. Although no. 24 (Trifolirhizin) turned out to
be a weak influential one that fell slightly outside from
the warning leverage limit, we decided not to delete
the compound from the training set.

On removal of outliers, four subsets of different
descriptors used in the final model were chosen on
the basis of the best values of R? and Q°.., and the
outlier-free data, from the 80 selected models. The
chosen parameters in Eq. 5 were GATS2m (Geary
autocorrelation-lag 2/weighted by atomic masses, 2D
autocorrelations), JGIS (mean topological charge index
of order 5, 2D Galvez topological charge indices),
JGI6 (mean topological charge index of order 6, 2D
Galvez topological charge indices) and Rém (R auto-
correlation of lag 6/weighted by atomic masses, 3D
GETAWAY descriptors). The regression analysis of
the reduced data set consisting of 32 compounds yield-
ed a predictive model on mass basis (ug/mL) with
significant statistics as below:

log(1/ROS)=5.15(£0.77)GATS2m
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Figure 1. Leave-one-out cross-validated experimental versus
predicted log(1/ROS) values (R*=0.757) (Eq. 1).

+55.40(£10.67)JGIS5
—43.71(£8.40)JGI6
—2.29(%£0.34)R6mM—5.58(+ 1.08)

(Eq.1)

MLR analyses demonstrate that the best RSA model
has the following statistical quality: n=32, R*=0.829,
Q*..=0.754, R? ;,=0.803, 0%,,,=0.717, K,=36.47,
K..=44.57, F=32.66, SE=0.158, PRESS=0.970.

The calculated standardized regression coefficient
values that contribute to the prediction of log(1/RSA)
are as follows: GATS2m=0.840, JGI5=0.653, R6ém
=-—0.597 and JGI6=—-0.42104. Log(1/ROS) was
found to be most influenced by GATS2m, and 1m-
pacted by JGIS, JGI6 and R6m 1n a less degree. Sca-
venging activity decreases when GATS2m and JGIS
increase while the activity increase JGI6 and Rém are
more negative.

The resultant final model obtained shows high flexi-
bility and the predicting ability with mostly 2D des-
criptors, which i1s confirmed by the close values of
R? .4 and Q.. The predictive power, Q7 of the equa-
tions was confirmed by LOO cross-validation method.
Table 1 shows a comparison of the experimental (Y-
Exp), calculated (Y-Calc), LOO-predicted (Y-Pred),
HAT and standardized error predicted values based
on Eq. 1. A linear regression plot of LOO-cross-vali-
dated predictive versus experimental log(1/ROS)
based on Eq. 1 is depicted in Figure 1.

In terms of applicability of domain, all data points
fell within +/— 2 standard deviations from the mean
although 24 (Trifolirhizin) was slightly out of critical
warning leverage point. However, we decided not to
delete it from the training set.

A plot of experimental versus predicted log(1/ROS)



172 Mol. Cell. Toxicol. Vol. 4(2), 170-176, 2008

values of 32 training set molecules shows good linear-
ity as depicted in Figure 1.

GATS2m is the mass-weighted Geary graph spatial
autocorrelation coefficient of the second lag. The
Geary coefficient 1S a distance-type function varying
from zero to infinity so that strong autocorrelation
produces low values of this index*>. The Galvez char-
ge indices (mean topological charge indices: JGIS and
JGI6) played a role in antioxidant activity of flavo-
noids®®?’. The Galvez charge indices contain impor-
tant information on the relationship between the fla-
vonoid structures and their activities by describing the
molecular topology and the intramolecular charge
transfer (intramolecular H-bonding). The presence of
two charge descriptors suggests that the reaction bet-
ween radical species and flavonoid molecule is basi-
cally radical addition, and that the deprotonated fla-
vonolids obtain hydrogens after reaction. It is presum-
ed from the model that positive sign of JGIS indicates
of proton addition, and intramolecular charge com-
plex as hydroquinone for negative sign of JGI6. R6m
belong to R-GETAWAY descriptors which combine
the information provided by the molecular influence/
distance matrix (MIM) with geometry matrix G%.

No QSAR models with less than four descriptors
were proposed because Q%00 and Q7 significantly
decreased to 0.653 and 0.391 with three descriptors
and 0.514 and 0.335 with two descriptors, indicating
a poor internal and external predictivity.

For external validation (test set correlation valida-
tion), data set was divided into a training (n=22) and
an external validation set (n=10) by 30% random
splitting. The overall external prediction accuracy for
the 94 modeling set ranged from 0.16 to 0.81 (aver-
age: 0.43) as measured. A training set selection of
compounds led to 0%,,5=0.754 and Q2,..,=0.573,
with moderate internal and external predictivity.
However, when we established the QSAR on molar
basis (M/1) instead of mass basis (lLg/mL), we could
not validate overall predictivity of the model equa-
tions (Eq. 1 and 2) through the use of external valida-
tion.

QSAR of DPPH Radical Scavenging Activity
Using Dragon Descriptors

Four outlier chemicals (Isoquercitrin (13), Maackia-
nin (20), Isoliquiritigenin (22), Baicalin (28) were
deleted from 35 compounds. The best predictive
equation on mass basis (mg/L) in the four-parametric
regression is given below:

log(1/DPPH)=0.440( +=0.098)EEig11x
—10.872(£3.325)Glu
+3.987(%0.993)ISH
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Figure 2. Leave-one-out cross-validated experimental versus
predicted log(1/DPPH) values (R*=0.702) (Eq. 2).

+10.583(£1.938)RPCG

—3.027(x1.157) (Eq. 2)

n=31, R>=0.788, 0%,=0.699, R*,;=0.756, Q*p,,;=
0.669, K,=60.72, K,,=66.14, F=24.194, SE=0.197

The calculated standardized regression coetficient
values that contribute to the prediction of log(1/ROS)
are as follows: EEigl1x=0.9267, Glu=—0.4596,
ISH=0.5391 and RPCG=0.8745. Log(1/ROS) was
found to be most influenced by EFiglix (2D edge
adjacency index) and RPCG (charge descriptor), and
impacted by G1u (3D WHIM descriptor) and ISH (3D
GETAWAY descriptor) in a less degree. The chemical
domain of pplicability was verified by the leverage
approach. All data points fell within +/— 2 standard
deviations from the mean, and within warning lever-
age point (h*=0.484).

To establish a reliable QSAR model, an external
test set consisting of ten molecules was used to mea-
sure the external predictivity. The overall external
prediction accuracy for the 94 modeling set ranged
from O to 0.66 (average: 38.49) as measured by 30%
random splitting. A training set selection of com-
pounds led to Q%,=0.754 and Q?.,=0.577 for a test
set, with moderate internal and external predictivity.

Figure 2 shows the plot of the predicted versus ex-
perimental log(1/DPPH) values of 31 training set
compounds. As it can be seen in Figure 2, three dif-
ferent clusters of compounds are clearly separated in
the plot. The compounds on numbers are evidently
separated from a cluster in the top right corner.

RPCG 1s the charge of the most positively charged
atom divided by sum of the total positive charge. It
encodes various aspects of the molecular disposition
to undergo electrostatic interactions®. EEigllx is re-
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Table 1. A list of chemical names, experimental (Y-Exp), calculated (Y-Calc), LOO-predicted (Y-Pred) and residual values for
both ROS and DPPH radical scavenging activities a mass basis (Lg/mL).

ID

Object

ROS scavenging activity®

DPPH scavenging activity®

Y-Exp. Y-Calc Y-Pred Hat Stl?r e];:fr' Y Exp. Y-Calc Y-Pred Hat Stlﬁilze%f'r'
1 Quercetin —0.89 —0.76  —-0.74 0.157 1.08 0.02 0.1 0.16 0.389* 0.88
2 Rutin —08 —-091 -092 0.168 -0.39 0.03 0.2 0.26 0.27 1.4
3 (+)-Catechin —093 —-091 -09 0.288 0.22 -0.46 —-032 —0.24 0.361% 1.42
4 Robinin —0.5 —0.47 —-0.46 0.151 0.31 0.74 0.62 0.6 0.109 —0.78
5 Genistein -0.19  -0.06 —-0.04 0.131 1.02 0.26 0.64 0.68 0.105 2.29
6 Vitexicarpin -0.69 044 =041 0.124 1.91 0.89 0.92 0.92 0.113 0.19
7 Astragalin 0.68 0.6 0.6 0.056 —0.43
8 Isorhamnetin —0.61 -0.71 =072 0.123 —=0.77 0.8 0.67 0.66 0.093 —0.74
9 Linarin -0.23 —-0.12 -0.11  0.097 0.76 0.54 0.88 0.93 0.13 2.12
10 Chrysin -0.21  —-0.16 —0.15 0.096 0.42 0.62 0.73 0.74  0.146 0.69
11 Naringenin —031 =006 —0.03 0.131 1.9 0.96 0.73 0.69 0.149 —1.47
12 Acacetin 0.46 0.28 0.22 0254 —1.73 0.57 0.65 0.68 0.222 0.62
13 Isoquercitrin -0.79 -0.67 -0.65 0.079 0.87
14 Icariin -0.19 =038 —-0.39 0047 —1.32 0.89 0.54 0.49 0.114 —-2.12
15 Epicatechin -0.92 =097 -099 0271 -0.51 —-0.53 -0.63 —-0.73 0470 —1.43
16 Hesperidin —0.36 —0.3 —0.3 0.093 0.44 0.41 0.46 0.47 0.09 0.3
17 Apigenin 0.77 0.53 0.46 0.222 —1.77
18 Genistin -0.16 -0.17 —-0.17 0.061 —-0.06 0.72 0.81 0.82 0.112 0.51
19 Apigenin 7-O- ~001 —0.17 —0.19 0097 —1.19 077 069 068 0081 —0.46
neohesperidoside
20 Maackianin 0.07 0.24 0.34 0.379*  2.16
21 Sophoflavescenol —-0.55 —-0.7 —-0.75 0221 —142 0.72 1.06 1.11  0.13 2.11
22 Isoliquiritigenin
23 Vitexin —0.66 —-0.57 -0.56 0.126 0.74 0.85 0.79 0.78  0.077 —0.38
24 Trifolirhizin —0.65 —-0.56 —-048 0.487** 1.52 0.8 0.63 0.54 0.363* —1.64
25 Naringin —-0.59 =049 048 0.105 0.71 0.37 0.32 0.31 0.106 ~0.28
26 Poncirin -041 —-042 -042 0.084 —0.09 0.28 0.31 0.31  0.117 0.15
27 Diosmetin 7-0- 021 —005 —008 0.101 —1.95 062 061 061 0144 —0.05
glucoside
28 Baicalin -0.76 =078 —-0.79 0.102 —0.16
29 Eupatilin 0.09 -0.17 -0.2 0.097 —1.89 0.96 0.77 0.75 0.094 —1.14
30 Liquiritigenin 0.09 -0.1 —-0.12 0.111 -14 0.82 0.71 0.69 0.149 —0.72
31 Isoxanthohumol —-0.51 -038 —-0.37 0.083 0.98 0.68 0.6 0.59 0.133 —0.46
32 Spinosin -0.54 =073 =077 0.168 —1.54 0.57 0.72 = 0.73 0.102 0.89
33 Sophoraflavanone G  —-0.52 —-0.68 —-0.73 0224 —1.51 0.96 0.65 0.6 0.138 —1.95
34 Sophoraflavanone D —-0.68 —-0.47 —04 0.231 2.06 0 0.12 0.13 0.112 0.73
35 Kenusanone I —-0.55 —-052 =052 0.115 0.18 0.05 0.25 0.27 0.1 1.2

Y-Exp. represents the negative logarithm of % ROS scavenging activity per pg/mlL.

B*HAT=0.469; "3*HAT=0.484

lated to topological structure and encodes the sub-
stituent effect on the acidity of substituted phenol. ISH
denotes standard information content taking into
account equivalence of H matrix elements. Glu is the
1st component symmetry directional WHIM index/
unweighted, encoding molecular symmetry that ex-
tracts the global symmetry information’.

Discussion

Table 2 summarizes statistical results of the two
MLR models. The regression analyses showed that the

final QSAR models for two different types of scaveng-
ing activities produced statistically significant predic-
tivities with four Dragon descriptors. The appearance
of different outliers and descriptors in both types of
models implies that each model may be acting by an
obviously different mechanism or elicit changes in
the scavenging activity.

We obtained two four-parametric QSAR models
and descriptors for two different training sets (ROS
and DPPH) in the generation of each model with a
low predictivity. An additional study however, show-
ed that the 3-D QSAR result seems not better than
that derived from the 2-D QSAR, which may arise
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Table 2. A summary of descriptors and statistics of GA-MLR models obtained from log(1/ROS) and log(1/DPPH).

QQLOO Q2b00r QQexr SE F

PRESS

Descriptors n R?
ROS scavenging activity
GATS2m, JGIS, JGI6, R6m 32 0.829
DPPH radical scavenging activity
EEigllx, Glu, ISH, RPCG 31 0.788

0.754 0.717 0.573 0.158 32.66 0.970

0.699 0.669  0.577 0.197 24.19 1.428

GATS2m (Geary autocorrelation-lag 2/weighted by atomic masses), JGIS (mean topological charge index of order 5), JGI6 (mean topological
charge index of order 6), Rém (R autocorrelation of lag 6/weighted by atomic masses), EEigl1x (Eigenvalue 11 from edge adjacent matrix wei-
ghted by edge degrees), Glu (1st component symmetry directional WHIM index/unweighted), ISH (standardized information content on the

leverage equality) and RPCG (relative positive charge)

from the fact that the radicals, the targets of antioxi-
dant, are small molecules, hence the radical-scaveng-
ing activity has little relevance to their 3-D structures,
possibly due to the calculation of data on a mass basis
instead of molar basis. The different selection of des-
criptors appears to be largely due to the inherent vari-
ability between cell experiment and experiment with
solid DPPH. The QSAR model by first ROS data set
demonstrated a more homogeneous distribution com-
pared to the model by DPPH data set (Figure 2). Three

different classes of compounds are clearly separated

in the plot of DPPH study, where (+)-Catechin and
Epicatechin had high leverage values and are to be
considered influential (strong scavenging activity).
Therefore, it is interesting to note that a biggest clus-
ter consisting of 21 compounds includes mostly lower
molecular weight polyphenolic compounds. A sepa-
rate QSAR model for each cluster may be needed to
reveal other selective responses for future study. It is
shown that constitutive descriptors (e.g. number of
OH groups 1n the molecule) have no significant role
in QSAR models, which is consistent with a previous
finding®®. It is clear that topological charge, H-bond-
ing complex and it’s deprotonation processes are in-
volved in the radical scavenging activity.

In this study, it was possible to consider some me-
chanistic aspects of the structure of the flavonoid
compounds studied that are associated with the free
radical scavenging activity of ROS and DPPH radical
scavenging activity on a mass basis. However, MLR
regression models performed with external validation
on a molar basis by a random sampling method yield-
ed no prediction power, due to high multi-collinearity
in both data sets.

There 1s a limitation that needs to be acknowledged
and addressed to elucidate their underlying overall
aspects of mechanisms of both ROS and DPPH radi-
cal scavenging activities. Our previous study works?'
revealed that DPPH QSAR models used a set of 3D-
Morse, WHIM and GETAWAY descriptors to inter-
pret the radical scavenging mechanisms of flavonoids.
This difference must be attributable to the calculation

of the data set based on mass basis rather than molar
basis, showing a partial mechanism ot whole spectrum
of the radical scavenging activity.

Additionally, there is the need for additional high-
quality quantitative data on structurally diverse che-
micals for further investigation. Much higher QSAR
correlation coefficients (R) for flavonoid end-point
antioxidant activity in all 3 assay systems using the
frontal polygon (FP) method (evaluated in the bioche-
mical, enzymatic, and whole cells assay systems, res-
pectively) were obtained in a recent QSAR study*”.
Hence, the combination of different assay systems
improves the accuracy of data even though DPPH
evidently offers a convenient and accurate antioxi-
dant activity.

Methods

Training Data Sets

Two types of data sets of experimental DPPH-RSA
and scavenging activity of intercellular ROS for 35
polyphenolic antioxidants were taken from the litera-
ture?!. The names of the flavonoids, ROS and DPPH
scavenging activity values of training set compounds
are listed in Table 1.

Descriptor Calculation

By using Hyperchem software 7.0 (Hypercube, Inc.,
USA), 200 chemicals were drawn and named by CAS
-number. Molecular mechanic force field (MM+)
was selected for the geometry optimization using Po-
lak-Ribiere algorithm with a maximum cycle (10000)
and a convergence limit of the 0.005 kcal/mol. After
optimizing chemical structures from the Hyperchem
7 software, Dragon 5.4 (TALETE srl-Milano, Italy) 1s
employed for the calculation of molecular descrip-
tors=?,

Chemometric Methods
For the validation of the model, the combination
GA-MLRA technique was utilized to select. the ap-
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propriate descriptors and to generate different QSAR
models as implemented in the Mobydigs program?’.
This algorithm allows to construct the models with
the following statistical characteristics: high squared
correlation coefficient R?, low standard deviation S,
the least number of descriptors, Fisher coefficient F,
Predictive Residual Error Sum of Squares (PRESS),
Standard error of calibration (SEC), standard error of
prediction (SEP), explained variance (R?,;) as addi-
tional statistical parameters. The predictive stability
of the models was verified applying internal Leave-
One-Out (LOO). The robustness of the model and its
predictivity was guaranteed by both the stability of
Q°100, and bootstrap (Q%,..). The model obtained on
the first chemicals selected is used to predict the val-
ues for the excluded sample, then Q% is calculated
for each model. The proposed model was also check-
ed for reliability and robustness by permutation test-
ing: new models were recalculated for randomly re-
ordered response (Y-scrambling). These chemometric
validation techniques are well described in literature?”.

The collinearity among descriptors must be check-
ed, and correlation between the X block and the Y
response verified (the QUIK rule of Todeschini based
on K: K, must be significantly higher than K).

For appilicability of domain, the developed model
was checked for the chemical domain to verify the
prediction reliability. In the Williams plot, or OLS
outlier and leverages (hat diagonals; h*=3p’/n), stan-
dardized cross-validated (or jackknifed) residuals are
also calculated.
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