• 제목/요약/키워드: Radical mechanism

검색결과 500건 처리시간 0.026초

New Mechanism for the Reaction of Thianthrene Cation Radical Perchlorate with tert-Butyl Peroxide

  • Park, Bo-Kyung;Sohn, Chang-Kook;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.103-106
    • /
    • 2002
  • A new reaction mechanism is proposed for the reaction of thianthrene cation radical perchlorate $(Th^{+{\cdot}}CIO_4^-}$ and tert-butyl peroxide in acetonitrile at room temperature on the basis of experimental and theoretical results. Rapid C-O bond rupture instead of O-O bond cleavage was observed by a good peroxy radical trapping agent, thianthrene cation radical. Products were N-tert-butyl acetamide, thianthrene 5-oxide (ThO), thianthrene 5,5-dioxide $(SSO_2)$, and thianthrene (Th). Thianthrene 5,10-dioxide (SOSO) was not obtained. A comparative computational study of the cation radical of tert-butyl peroxide is made by using B3LYP and CBS-4. The computational results are helpful to explain the reaction mechanism.

Titanium Complexes: A Possible Catalyst for Controlled Radical Polymerization

  • Kwark, Young-Je;Kim, Jeong-Han;Novak Bruce M.
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.31-38
    • /
    • 2007
  • Pentamethylcyclopentadienyltitanium trichloride, bis(cyclopentadienyl)titanium dichloride ($Cp_2TiCl_2$), and bis(pentamethylcyclopentadienyl)titanium dichloride were used in the polymerization of styrene without the aid of Group I-III cocatalysts. The properties of the resulting polymer indicated that polymerization was more controlled than in thermal polymerization. The kinetic studies indicated that a lower level of termination is present and that the polymer chain can be extended by adding an additional monomer. To elucidate the mechanism of polymerization, a series of experiments was performed. All results supported the involvement of a radical mechanism in the polymerization using $Cp_2TiCl_2$. The possibility of atom transfer radical polymerization (ATRP) mechanism was investigated by isolating the intermediate species. We could confirm the activation step from the reaction of 1-PEC1 with $Cp_2TiCl$ by detecting the coupling product of the generated active radicals. However, the reversible deactivation reaction competes with other side reactions, and it detection was difficult with our model system.

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

은 이온교환 A 형 제오라이트에 의한 라디칼 발생메카니츰과 그 응용에 관한 연구 (The Generation Mechanism of Radical in the Silver-ion-fluted Aqueous Solution from A-type Zeolite Supporting Silver tons and Its Applications)

  • 임경천;구경완;황재효;오상묵;타가사키유케
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.142-145
    • /
    • 1999
  • We confirm that when A-type zeolite supporting silver lone is placed in ion-exchanged distilled water, silver ions is eluted and eluted silver ions generates hydroxyl-radical (.OH) and hydro-radical (.H) continuously, the amount of those is proportion to the silver-ion concentration. Hydroxyl-radical is not generated by super-oxide anion-radical (.O2) but by directly dissolved water. To know such a above discussed mechanism, we prepare A-type zeolite supporting silver ions, and measure the amount of the eluted silver tons by atomic absorption spectroscopy and the generated radical by ESR The radical generated by A-type zeolite supporting silver ions is discussed in the application of elecrical and electronic materials.

  • PDF

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Diels-Alder 反應에 對한 理論的 硏究 (第2報). 新 United Ionic-Radical Mechanism (Theoretical Studies of Diels-Alder Reaction (Part II). A New United Ionic-Radical Mechanism of Diels-Alder Reaction)

  • 박병각
    • 대한화학회지
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 1973
  • 區區한 Diels-Alder 反應의 구조를 규명하기 위하여 Diels-Alder 反應 基 自體의 本質에 가장 가깝다고 생각한 새로운 擬似分子化合物이라는 遷移狀態의 模型을 假定하여 Mulliken의 分子化合物의 量子力學을 適用하였다. 이 擬似分子化合物은 이온성과 Radical성을 지닌 混成體이다. 이 混成體의 波動函數는 다음 식으로 표현된다. ${\psi}_{complex} = {\psi}(R,S) + {\rho}{\psi}(R^+,S^-)$ 여기 ${\rho}$는 擬似分子化合物의 極性程度를 나타내는 것이고 이 ${\rho}$가 Diene과 Dienpohile의 反應中心原子들의 自由原子價의 차 $({\Delta}F)$에 關係함을 밝혔다. 아울러 이 ${\Delta}F$量이 Brown氏의 Lp量 및 Dewar氏의 ${\Delta}E_{deloc}$量과 直線성이 있음을 알았다. Diels-Alder反應의 可能性與否를 24組의 反應組에 對하여 豫言하였다. 따라서 우리가 假定한 遷移狀態의 模型이 眞實에 가깝다고 볼 수 있으며 결국 Diels-Alder 反應은 同時附加로 융합된 ionic-Radical mechanism으로 反應이 進行한다고 볼 수 있다.

  • PDF

전해산화에 의한 백금전극상 전도성 폴리아닐린 피막의 생장 거동(II) (Growth Behavial Couctive PolyanilineFilm on a Platinum Electrode by Electrochemical Oxidation (II))

  • 신성호;이주성
    • 한국표면공학회지
    • /
    • 제21권3호
    • /
    • pp.95-102
    • /
    • 1988
  • The anodic oxidation of aniline in aqueous sulfuric acid solution on a platinum was studied. To examine of mechanism of this reaction, the date were obtained during controlled potential electrolysis, aided by computer system. The reaction mechanism was assumed the electrochemical-chemical-electrochemical(ECE) mechanism. We obtained the result that the intial charge transfer step proceeds through a radical cation, and this radical cation were bound cation led to may type of dimer in which p-aminodiphenylamine was de-electronated again to give the polymer.

  • PDF

Oxidative DNA 손상에 대한 Quercetin 및 그 배당체들의 유전독성억제효과와 작용기전 (Antigenotoxicity and Action Mechanism of Quercetin and its Glycosides against Oxidative DNA Damage)

  • 김수희;허문영
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권2호
    • /
    • pp.116-121
    • /
    • 1999
  • Quercetin and its glycosides showed a strong free radical scavenging effect to DPPH radical generation. However, there were not big differences between quercetin aglycone and glycosides under experimental condition of this study. On the other hand, quercetin had pro-oxidant effect in bleomycin-dependent DNA assay. Quercetin aglycone and its glycosides, quercitrin inhibited $H_2$$O_2$- induced DNA damage in CHL cells. They also have an anticlastogenicity toward DNA breakage agent by radical generation like bleomycin. These results indicate that quercetin aglycone and its glycosides are capable of protecting the free radical generation induced by reactive oxygen species like $H_2$$O_2$. The mechanism of inhibition in hydrogen peroxide-induced genotoxicity may be due to their free radical scavenging properties. Therefore, quercetin aglycone and its glycosides may be useful chemopreventive agents by protecting of free radical generation which are involved in carcinogenesis and aging. However, quercetin and its glycosides must also carefully examined for pro-oxidant properties before being proposed for use in vivo.

  • PDF

Reactivity and Reaction Mechanism for Reactions of 1, 1'-(Azodicarbonyl) dipiperidine with Triphenylphosphines

  • 성대동;최미정;하근문;엄태섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.935-938
    • /
    • 1999
  • Reactivity and reaction mechanism for the reactions of 1,1'-(azodicarbonyl) dipiperidine with triphenylphosphines are investigated using kinetic method. The cation radical, Ph3P and the anion radical, -N-N - are produced during the course of the reaction. The cation radical is formed by the transfer of an electron from phosphorus to the nitrogen atom. The anion radical is formed by the addition of the one electron to the azo rad-ical. The rate constants are decreased by electron withdrawing groups while they are increased by electron donating groups present in triphenylphosphine. The electron density increases on nitrogen, while positive charge is developed on phosphorus in the transition state.