• Title/Summary/Keyword: Radiation spectrum

Search Result 504, Processing Time 0.024 seconds

Assessment of Temporary Radioactivation for Tissue Expanders in Breast Radiation Therapy: Preliminary Study

  • Hwajung Lee;Do Hoon Oh;Lee Yoo;Minsoo Chun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.100-106
    • /
    • 2023
  • Background: As breast tissue expanders consist of metallic materials in the needle guard and ferromagnetic injection port, irradiation can produce radioactivation. Materials and Methods: A CPX4 (Mentor Worldwide LLD) breast tissue expander was exposed using the Versa HD (Elekta) linear accelerator. Two photon energies of 6 and 10 MV-flattening filter free (FFF) beams with 5,000 monitor units (MU) were irradiated to identify the types of radiation. Furthermore, 300 MU with 10 MV-FFF beam was exposed to the CPX4 breast tissue expander by varying the machine dose rates (MDRs) 600, 1,200, and 2,200 MU/min. To assess the instantaneous dose rates (IDRs) solely from the CPX4, a tissue expander was placed outside the treatment room after beam irradiation, and a portable radioisotope identification device was used to identify the types of radiation and measure IDR. Results and Discussion: After 5,000 MU delivery to the CPX4 breast tissue expander, the energy spectrum whose peak energy of 511 keV was found with 10 MV-FFF, while there was no resultant one with 6 MV-FFF. The time of each measurement was 1 minute, and the mean IDRs from the 10 MV-FFF were 0.407, 0.231, and 0.180 μSv/hr for the three successive measurements. Following 10 MV-FFF beam irradiation with 300 MU indicated around the background level from the first measurement regardless of MDRs. Conclusion: As each institute room entry time protocol varies according to the working hours and occupational doses, we suggest an addition of 1 minute from the institutes' own room entry time protocol in patients with CPX4 tissue expander and the case of radiotherapy vaults equipped with a maximum energy of 10 MV photon beams.

GESS-A Code for Verification of Shielding Integrity by Monte Carlo Method (몬테칼로 방법에 의한 차폐체 건전성 검증코드 개발)

  • Lee, Tae-Young;Ha, Chung-Woo;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 1986
  • GESS-a computer code for simulation of energy spectra for gamma-ray in NaI(T1) scintillator has been developed. The Monte Carlo method was employed to simulate physical behaviours of particle transport in a medium. In the processes of simulation, all the interaction processes such as Rayleigh and Compton scattering, photoelectric effect and pair production were considered. The resulting electron slowing down spectrum was also considered with the CSDA model. For the purpose of verification of the code, a measurement gamma spectrum for incident gamma energy of 1.33 MeV was performed. The measured values appeared to be slightly higher than the theoretically calculated values.

  • PDF

Characteristics of Low-power Microwave Induced Plasma Emission Spectrum and Detection of $CO_2$ (저출력 마이크로파 유도 플라스마 방출스펙트럼의 특성과 $CO_2$ 분석)

  • Noh, Seung Man;Park, Chang Joon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.235-242
    • /
    • 1996
  • A surfatron-type microwave induced plasma (MIP) cavity has been constructed, which can be easily interfaced with a gas chromatograph. Various plasma gases such as He, Ar and N2 were used to generate the MIP and small amounts of CO2 gases were injected through the MIP to obtain characteristic spectrum of each plasma gas and to study feasibility of the MIP as a soft ionization source. Since He and Ar plasmas have high metastable state energy, it was not possible to detect sample gas in molecular state. With N2 plasma, however, a strong emission of molecular ions could be detected owing to its low metastable state energy.

  • PDF

Effect of Prompt Fission Neutron Spectral Formulae on Nuclear Criticality (핵분열(核分裂) 중성자(中性子)스펙트럼이 핵임계도(核臨界度)에 미치는 효과(效果))

  • Ro, Seung-Gy;Min, Duck-Kee;Youk, Geun-Uck;Oh, Hi-Peel
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.56-60
    • /
    • 1982
  • A calculation of the effective multiplication factor has been made for GODIVA and JEZEBEL critical assemblies by using a computer code, ANISN, with having the Watt's, Cranberg's and Maxwellian formulae for the prompt fission neutron spectrum as a fission source. Then the calculated values have been compared with experimental data obtained by others. The Maxwellian formula seems to be the best one for representing the prompt fission neutron spectrum since the effective multiplication factor based on it shows a better agreement with the experimental value compared to the rest formulae.

  • PDF

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

Study on Dual-Energy Signal and Noise of Double-Exposure X-Ray Imaging for High Conspicuity

  • Song, Boram;Kim, Changsoo;Kim, Junwoo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.160-169
    • /
    • 2021
  • Background: Dual-energy X-ray images (DEI) can distinguish or improve materials of interest in a two-dimensional radiographic image, by combining two images obtained from separate low and high energies. The concepts of DEI performance describing the performance of double-exposure DEI systems in the Fourier domain been previously introduced, however, the performance of double-exposure DEI itself in terms of various parameters, has not been reported. Materials and Methods: To investigate the DEI performance, signal-difference-to-noise ratio, modulation transfer function, noise power spectrum, and noise equivalent quanta were used. Low- and high-energy were 60 and 130 kVp with 0.01-0.09 mGy, respectively. The energy-separation filter material and its thicknesses were tin (Sn) and 0.0-1.0 mm, respectively. Noise-reduction (NR) filtering used the Gaussian-filter NR, median-filter NR, and anti-correlated NR. Results and Discussion: DEI performance was affected by Sn-filter thickness, weighting factor, and dose allocation. All NR filtering successfully reduced noise, when compared with the dual-energy (DE) images without any NR filtering. Conclusion: The results indicated the significance of investigating, and evaluating suitable DEI performance, for DE images in chest radiography applications. Additionally, all the NR filtering methods were effective at reducing noise in the resultant DE images.

The emission spectrum from isolated black holes

  • Gwon, Sun-Ja;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.86.3-86.3
    • /
    • 2015
  • There could be significant numbers of isolated stellar mass black holes in our Galaxy. The detection of these black holes will provide important clues on the origin of supermassive black holes. Interstellar gas will be accreted to these isolated black holes in nearly spherical flow. The gas and the interstellar magnetic field will be compressed and emit bremsstrahlung and magnetic bremsstrahlung. We calculate the density, temperature, magnetic field of the accretion flow onto a 10 solar mass black hole as well as its radiative emission; special attention is given to cyclotron radiation and synchrotron radiation, which covers from microwave to X-ray. We consider the possibility to detect these radiation from isolated Galactic black holes with current instruments and surveys.

  • PDF

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

LARGE SCALE MAGNETOGENESIS THROUGH RADIATION PRESSURE

  • LANGER MATHIEU;PUGET JEAN-LOUP;AGHANIM NABILA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.553-556
    • /
    • 2004
  • We present a new model for the generation of magnetic fields on large scales occurring at the end of cosmological reionisation. The inhomogeneous radiation provided by luminous sources and the fluctuations in the matter density field are the major ingredients of the model. More specifically, differential radiation pressure acting on ions and electrons gives rise to electric currents which induce magnetic fields on large scales. We show that on protogalactic scales, this process is highly efficient, leading to magnetic field amplitudes of the order of $10^{-1l}$ Gauss. While remaining of negligible dynamical impact, those amplitudes are million times higher than those obtained in usual astrophysical magnetogenesis models. Finally, we derive the relation between the power spectrum of the generated field and the one of the matter density fluctuations. We show in particular that magnetic fields are preferably created on large (galactic or cluster) scales. Small scale magnetic fields are strongly disfavoured, which further makes the process we propose an ideal candidate to explain the origin of magnetic fields in large scale structures.

A Study on the Development of Nuclear Radiation Detector with Silicon PIN Photodiode (실리콘 포토다이오드를 이용한 방사선 검출기 개발에 관한 연구)

  • Yi, Un-K.;Kim, Jung-S.;Sohn, Chang-H.;Baek, Kwang-R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.754-756
    • /
    • 1999
  • In this paper, we have developed a high-sensitivity SNRD(Semiconductor Nuclear Radiation Detector) using silicon PIN photodiode. The SNRD is constructed with silicon PIN photodiode(S3590-05), preamplifier and shaping amplifier. To show the effectiveness of SNRD, nuclear radiation experiments are conducted with $\gamma$-ray Ba-133, Cs-137 and Co-60. The SNRD is different in characteristics of the energy spectrum to scintillation detectors. However, the SNRD have a good linearity on $\gamma$-ray energy and activity. The results of this paper can be applied to electronic personal dosimeter.

  • PDF