Browse > Article
http://dx.doi.org/10.5140/JASS.2013.30.3.133

Nonthermal Radiation from Supernova Remnant Shocks  

Kang, Hyesung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of Astronomy and Space Sciences / v.30, no.3, 2013 , pp. 133-140 More about this Journal
Abstract
Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.
Keywords
cosmic rays; supernova remnants; shock waves; nonthermal radiation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Giordano F, Naumann MG, Ballet J, Bechtol K , Funk S, et al., Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho, ApJ, 744, L2-L6 (2012). http://dx.doi.org/10.1088/2041-8205/744/1/L2   DOI
2 Guo F, Jokipii JR, Kota J, Particle Acceleration by Collisionless Shocks Containing Large-scale Magneticfield Variations, ApJ, 725, 128-133 (2010). http://dx.doi.org/10.1088/0004-637X/725/1/128   DOI
3 Hillas AM, TOPICAL REVIEW: Can diffusive shock acceleration in supernova remnants account for highenergy galactic cosmic rays?, J. Phys. G: Nucl. Part. Phys., 31, R95 (2005). http://dx.doi.org/10.1088/0954-3899/31/5/R02   DOI   ScienceOn
4 Jones TW, Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks, ApJ, 413, 619-632, (1993). http://dx.doi.org/10.1086/173031   DOI
5 Kang H, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25-39 (2010).   과학기술학회마을   DOI   ScienceOn
6 Kang H, Diffusive Shock Acceleration with Magnetic Field Amplification and Alfvenic Drift, JKAS, 45, 127-138 (2012).
7 Kang H, Edmon PP, Jones JW, Nonthermal Radiation from Cosmic-Ray Modified Shocks, ApJ, 745, 146-159 (2012). http://dx.doi.org/10.1088/0004-637X/745/2/146   DOI
8 Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, et al., Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant, ApJ, 730, L20-L25 (2011). http://dx.doi.org/10.1088/2041-8205/730/2/L20   DOI
9 Ave M, Boyle PJ, Hoeppner C, Marshall J, Mueller D, Propagation and source energy spectra of cosmic ray nuclei at high energies, ApJ, 697, 106-114 (2009). http://dx.doi.org/10.1088/0004-637X/697/1/106   DOI
10 Bamba A, Yamazaki R, Ueno M, Koyama K, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827-837 (2003). http://dx.doi.org/10.1086/374687   DOI   ScienceOn
11 Bell AR, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147-156 (1978).   DOI
12 Bell AR, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, MNRAS, 353, 550-558 (2004). http://dx.doi.org/10.1111/j.1365-2966.2004.08097.x   DOI   ScienceOn
13 Berezhko EG, Ksenofontov LT, Voelk, HJ., Cosmic ray acceleration parameters from multi-wavelength obser vat ions. The case of SN 1006, A&A, 505, 169-176 (2009). http://dx.doi.org/10.1051/0004-6361/200911948   DOI   ScienceOn
14 Blandford RD, Eichler D, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1 (1987). http://dx.doi.org/10.1016/0370-1573(87)90134-7   DOI   ScienceOn
15 Bykov AM, Osipov SM, Ellison DC, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability, MNRAS, 410, 39-52 (2011). http://dx.doi.org/10.1111/j.1365-2966.2010.17421.x   DOI   ScienceOn
16 Caprioli D, Understanding hadronic gamma-ray emission from supernova remnants, JCAP, 5, 26 (2011). http://dx.doi.org/10.1088/1475-7516/2011/05/026   DOI   ScienceOn
17 Caprioli D, Cosmic-ray acceleration in supernova remnants: non-linear theory revised, JCAP, 7, 38 (2012). http://dx.doi.org/10.1088/1475-7516/2012/07/038   DOI   ScienceOn
18 Reynolds SP, Supernova Remnants at High Energy, ARAA, 46, 89-126 (2008). http://dx.doi.org/10.1146/annurev.astro.46.060407.145237   DOI   ScienceOn
19 Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, et al., Fermi-Lat Discovery of GeV Gamma-Ray Emission from the Young Supernova Remnant Cassiopeia A, ApJ, 710, L92-L97 (2010). http://dx.doi.org/10.1088/2041-8205/710/1/L92   DOI
20 Riquelme MA, Spitkovsky A, Magnetic Amplification by Magnetized Cosmic Rays in Supernova Remnant Shocks, ApJ, 717, 1054-1066 (2010). http://dx.doi.org/10.1088/0004-637X/717/2/1054   DOI
21 Reynolds SP, Gaensler BM, Bocchino F, Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae, Space Science Reviews, 166, 231-261 (2012). http://dx.doi.org/10.1007/s11214-011-9775-y   DOI
22 Zirakashvili VN, Ptuskin VS, Diffusive Shock Acceleration with Magnetic Amplification by Nonresonant Streaming Instability in Supernova Remnants, ApJ, 678, 939-949 (2008). http://dx.doi.org/10.1086/529580   DOI
23 Rogachevskii I, Kleeorin N, Brandenburg A, Eichler D, Cosmic-Ray current-driven turbulence and mean-field dynamo effect, ApJ, 753, 6-22 (2012). http://dx.doi.org/10.1088/0004-637X/753/1/6   DOI
24 Schure KM, Bell AR, Drury LO'C, Bykov AM, Diffusive Shock Acceleration and Magnetic Field Amplification, Space Sci. Rev., 173, 491-519 (2012). http://dx.doi.org/10.1007/s11214-012-9871-7   DOI
25 Skilling J, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557-566 (1975).   DOI
26 Zirakashvili VN, Ptuskin VS, Numerical simulations of diffusive shock acceleration in SNRs, Astropart. Phys., 39, 12-21 (2012). http://dx.doi.org/10.1016/j.astropartphys.2011.09.003   DOI   ScienceOn
27 Kang H, Jones TW, Numerical studies of diffusive shock acceleration at spherical shocks, Astropart. Phys, 25, 246-258 (2006). http://dx.doi.org/10.1016/j.astropartphys.2006.02.006   DOI   ScienceOn
28 Kang H, Jones TW, Gieseler UDJ, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337-358 (2002). http://dx.doi.org/10.1086/342724   DOI   ScienceOn
29 Lee S, Ellison DC, Nagataki S, A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant, ApJ, 750, 156-168 (2012). http://dx.doi.org/10.1088/0004-637X/750/2/156   DOI
30 Lucek SG, Bell AR, Non-linear amplification of a magnetic field driven by cosmic ray streaming, MNRAS, 314, 65-74 (2000). http://dx.doi.org/10.1046/j.1365-8711.2000.03363.x   DOI   ScienceOn
31 Malkov MA, Drury LO'C, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429-481 (2001). http://dx.doi.org/10.1088/0034-4885/64/4/201   DOI   ScienceOn
32 Morlino G, Caprioli D, Strong evidence for hadron acceleration in Tycho's supernova remnant, Tycho, theoretical fit, Alfven drift, A&A, 538, 81-94 (2012). http://dx.doi.org/10.1051/0004-6361/201117855   DOI
33 Parizot E, Marcowith A, Ballet J, Gallant YA, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&A, 453, 387-395 (2006). http://dx.doi.org/10.1051/0004-6361:20064985   DOI   ScienceOn
34 Ptuskin VS, Zirakashvili VN, On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation, A&A, 429, 755-765 (2005). http://dx.doi.org/10.1051/0004-6361:20041517   DOI   ScienceOn
35 Riquelme MA, Spitkovsky A, Nonlinear Study of Bell's Cosmic Ray Current-Driven Instability, ApJ, 694, 626-642 (2009). http://dx.doi.org/10.1088/0004-637X/694/1/626   DOI
36 Drury LO'C, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973-1027 (1983). http://dx.doi.org/10.1088/0034-4885/46/8/002   DOI   ScienceOn
37 Edmon PP, Kang H, Jones TW, Ma R, Non-thermal radiation from Type Ia supernova remnants, MNRAS, 414, 3521-3536 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.18652.x   DOI   ScienceOn
38 Gargate L, Spitkovsky A, Ion Acceleration in Non-relativistic Astrophysical Shocks, ApJ, 744, 67-81 (2012). http://dx.doi.org/10.1088/0004-637X/744/1/67   DOI