• Title/Summary/Keyword: Radiation shielding glass

Search Result 50, Processing Time 0.022 seconds

Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications

  • Zaid, M.H.M.;Matori, K.A.;Sidek, H.A.A.;Ibrahim, I.R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1323-1330
    • /
    • 2021
  • This work reported the radiation shielding characteristic of the bismuth titanium vanadium sodium tellurite glass system. The density of the specially-developed glass samples was increased from 2.21 to 4.01 g/cm3 with the addition of Bi2O3, despite the fact the molar volume is decease within 85.43-54.79 cm3/mol. The WinXcom program was used to approximate the effect of Bi2O3 on the gamma radiation shielding parameters of bismuth titanium vanadium sodium tellurite glasses. The ㎛ values decrease with the increase of Bi2O3 concentration. The computed data shows that the glass sample with 20 mol.% of Bi2O3 content has the greatest radiation attenuation performance in comparison to other selected glasses. The Bi2O3-TiO2-V2O5-Na2O-TeO2 glass system shows excellent neutron shielding material with high long-term light transmittance and discharge resistance and could be potentially used as transparent radiation-resistant shielding glass applications.

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S.;Bondouk, I.I.;Saleh, Hosam M.;Omar, Khaled M.;Sayyed, M.I.;El-Khatib, Ahmed M.;Elsafi, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1456-1463
    • /
    • 2022
  • The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.

Physical characterization and radiation shielding features of B2O3-As2O3 glass ceramic

  • Mohamed Y. Hanfi;Ahmed K. Sakr;A.M. Ismail;Bahig M. Atia;Mohammed S. Alqahtani;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.278-284
    • /
    • 2023
  • The synthetic B2O3-As2O3 glass ceramic are prepared to investigate the physical properties and the radiation shielding capabilities with the variation of concentration of the As2O3 with 10, 20, 30, and 40%, respectively. XRD analyses are performed on the fabricated glass-ceramic and depicted the improvement of crystallinity by adding As2O3. The radiation shielding properties are studied for the B2O3-As2O3 glass ceramic. The values of linear attenuation coefficient (LAC) are varied with the variation of incident photon gamma energy (23.1-103 keV). The LAC values enhanced from 12.19 cm-1-37.75 cm-1 by raising the As2O3 concentration from 10 to 40 mol% at low gamma energy (23.1 keV) for BAs10 and BAs40, respectively. Among the shielding parameters, the half-value layer, transmission factor, and radiation protection efficiency are estimated. Furthermore, the fabricated samples of glass ceramic have low manufacturing costs and good shielding features compared to the previous work. It can be concluded the B2O3-As2O3 glass ceramic is appropriate to apply in X-ray or low-energy gamma-ray shielding applications.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3

  • Issa, Shams A.M.;Ali, Atif Mossad;Tekin, H.O.;Saddeek, Y.B.;Al-Hajry, Ali;Algarni, Hamed;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1297-1303
    • /
    • 2020
  • In this study, nuclear radiation shielding and rigidity parameters of Y (0.1-x)B0.6Bi1.8O3La2x glassy system were investigated in order to determine it's suitability for use as nuclear radiation shielding materials. Therefore, a group of bismuth borate glass samples with La2O3 additive were synthesized using the technique of melt quenching. According to the results, the increase of the La2O3 additive increases the density of the glass samples and the mass attenuation coefficient (μm) values, whereas the half-value layer (HVL) and mean free path (MFP) values decrease. The effective atomic number (Zeff) is also enhanced with an increment of both mass removal cross section for neutron (ΣR) and absorption neutron scattering cross section (σabs). In addition to the other parameters, rigidity parameter values were theoretically examined. The increase of La2O3 causes some other important magnitudes to increase. These are the average crosslink density, the number of bonds per unit volume, as well as the stretching force constant values of these glass samples. These results are in concordance with the increase of elastic moduli in terms of the Makishima-Mackenzie model. This model showed an increase in the rigidity of the glass samples as a function of La2O3.

Studies on structural, optical, thermal and low energy shielding for gamma rays for the ZSBP glasses

  • Abeer S. Altowyan;M.I. Sayyed;Ashok Kumar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3796-3803
    • /
    • 2024
  • By employing the melt-quenching technique, the ZnO-SrO-B2O3-PbO (ZSBP) glasses have been successfully fabricated. The derivative of Absorption Spectra Fitting (DASF) method was used to study the energy band gap (Eg) of the glasses which decreases from 3.57 eV to 3.39 eV. The structural properties have been studied using the Raman spectroscopy. The glass transition temperature (Tg) decreases with increase in concentration of the lead oxide. The current study examines the radiation shielding properties at 30.80-444 keV. The addition of PbO to the glasses resulted in a proportionate increase in the mass attenuation coefficient (MAC), suggesting a diminishing tendency in radiation transmission. At 30.80 keV, the MAC values are extremely high and range from 18.06 to 21.11 cm2/g. As density rises, the half value layer (HVL) decreases. In addition, the average HVL (${\overline{HVL}}$) decreases. The glass thickness required to reduce the radiation intensity to 90 %, 50 %, 25 %, and 10 % of its initial value is investigated at an energy of 35.80 keV. The T90 %, T50 %, T25 %, and T10 % values are 0.0020, 0.0132, 0.0264, and 0.0439 cm, respectively. The results suggest that a greater thickness of the radiation barrier is necessary to attain the necessary degree of attenuation.

Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system

  • Mhareb, M.H.A.;Alajerami, Y.S.M.;Dwaikat, Nidal;Al-Buriahi, M.S.;Alqahtani, Muna;Alshahri, Fatimh;Saleh, Noha;Alonizan, N.;Saleh, M.A.;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.949-959
    • /
    • 2021
  • The current study aims to explore the shielding properties of multi-component borate-based glass series. Seven glass-samples with composition of (80-y)H3BO3-10ZnO-10Na2O-yBaO where (y = 0, 5, 10, 15, 20, 25 and 30 mol.%) were synthesized by melt-quench method. Various shielding features for photons, neutrons, and protons were determined for all prepared samples. XCOM, Phy-X program, and SRIM code were performed to determine and explain several shielding properties such as equivalent atomic number, exposure build-up factor, specific gamma-ray constants, effective removal cross-section (ΣR), neutron scattering and absorption, Mass Stopping Power (MSP) and projected range. The energy ranges for photons and protons were 0.015-15 MeV and 0.01-10 MeV, respectively. The mass attenuation coefficient (μ/ρ) was also determined experimentally by utilizing two radioactive sources (166Ho and 137Cs). Consistent results were obtained between experimental and XCOM values in determining μ/ρ of the new glasses. The addition of BaO to the glass matrix led to enhance the μ/ρ and specific gamma-ray constants of glasses. Whereas the remarkable reductions in ΣR, MSP, and projected range values were reported with increasing BaO concentrations. The acquired results nominate the use of these glasses in different radiation shielding purposes.