• Title/Summary/Keyword: Radiation information source

Search Result 153, Processing Time 0.025 seconds

Detection Range Improvement of Radiation Sensor for Radiation Contamination Distribution Imaging (방사선 오염분포 영상화를 위한 방사선 센서의 탐지 범위 개선에 관한 연구)

  • Song, Keun-Young;Hwang, Young-Gwan;Lee, Nam-Ho;Na, Jun-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1535-1541
    • /
    • 2019
  • To carry out safe and rapid decontamination in radiological accident areas, acquisition of various information on radiation sources is needed. In particular, to figure out the location and distribution of radiation sources is essential for rapid follow-up and removal of contaminants as well as minimizing worker damage. The radiation distribution detection device is used to obtain the position and distribution information of the radiation source. In the case of a radiation distribution detection device, a detection sensor unit is generally composed of a single sensor, and the detection range is limited due to the physical characteristics of the single sensor. We applied a calibration detector for controlling the detection sensitivity of a single sensor for radiation detection and improved the limited detection range of radiation dose rate. Also, gamma irradiation test confirmed the improvement of radiation distribution detection range.

KEY IMPACT PARAMETERS FOR APPLICATION OF ALTERNATIVE SOURCE TERM TO KORI UNIT 1

  • Lee, Seung-Chan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.394-413
    • /
    • 2010
  • The object of this paper is to identify the key elements that impact a radiation dose at EAB (Exclusion Area Boundary). This study is based on the AST (Alternative Source Terms) as defined in Regulatory Guide 1.183. The LOCA (Loss of Coolant Accident) and the LRA (Locked Rotor Accident) are selected as limiting cases. A sensitivity analysis of accidental behavior with respect to various parameters during LOCA and LRA at Kori Unit 1 is also undertaken for the following objectives: to determine the limiting parameters, to find the impact trend of the radiation dose, and to find the safety margin between AST and TID (Technical Information Document) methodologies. This work confirms that key parameters are particulate removal rate, decontamination factor, iodine chemical form, gap fraction, partitioning factor, and the impact of isotopes group. Comparing TID with AST, the radiation dose of TID is about 80% greater than that of AST under a LOCA, and about 60% greater than that of AST for the case of a LRA; thus the safety margin is remarkably increased when the AST is used. In this work, the sensitivity analysis results are presented in terms of a sensitivity index called the "NDD (Normalized Dose Difference)", which compares the impact of parameters with that of a reference case. These values are derived by using a combination of the leak rate (primary to secondary), iodine chemical form, gap fraction, partitioning factor, spray removal rate, source term, and other variables.

The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing (영상처리기반 감마선 분포탐지 효율 개선에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.780-781
    • /
    • 2016
  • The stereo radiation detection system detects gamma ray source and measures the two dimensional distribution image based on the detection result. Then the system is implemented to measure the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we reduced the time for a gamma-ray scan space detection through image processing algorithms. In addition, it combines radiation and visible light images. Then we conducted a study for improving the distribution of gamma-ray detection efficiency through the stereo calibration using a 3D visualization. As a result, we obtain an improved detection time by more than 30% and have acquired a visible image with a 3D monitor.

  • PDF

Design and Implementation of an optical wavelength analyzer (CCD 카메라를 이용한 방사선 탐지기의 영상화 기술 연구)

  • Park, Sung-hoon;Park, Jong Won;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.811-813
    • /
    • 2013
  • In order to measure the radiation, there are types of sensors plurality. I was using the detection method and sensitivity of the CCD sensor in the scintillator and collimator in the sensor. In this study, in order to detect radiation using a CCD sensor with high resolution, by measuring the radiation dose by processing the visible light generated in response to radiation of the image coming into the CCD in the scintillator in space it is to present a pointer that radiation comes out most. It is intended to imaging by calculation of the distance to the radiation source to the implementation of the stereo camera system video in the future.

  • PDF

A Methodology of Dual Gate MOSFET Dosimeter with Compensated Temperature Sensitivity

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • MOS (Metal-Oxide Semconductor) devices among the most sensistive of all semiconductors to radiation, in particular ionizing radiation, showing much change even after a relatively low dose. The necessity of a radiation dosimeter robust enough for the working environment has increased in the fields of aerospace, radio-therapy, atomic power plant facilities, and other places where radiation exists. The power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) has been tested for use as a gamma radiation dosimeter by measuring the variation of threshold voltage based on the quantity of dose, and a maximum total dose of 30 krad exposed to a $^{60}Co$ ${\gamma}$-radiation source, which is sensitive to environment parameters such as temperature. The gate oxide structures give the main influence on the changes in the electrical characteristics affected by irradiation. The variation of threshold voltage on the operating temperature has caused errors, and needs calibration. These effects can be overcome by adjusting gate oxide thickness and implanting impurity at the surface of well region in MOSFET.

A Study on the Acoustic Fault Detection System of Insulators from Their Radiation Noises

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.510-514
    • /
    • 2011
  • To detect the insulator in the fault state on the electric poles, we first measured radiation sounds from normal state insulators and error state insulators in the anechoic chamber. We processed the signals in frequency domain to find the features with filter bank, narrow band and wide band analysis. So we could found two apparent results from their frequency spectrums - one was 120Hz harmonic components, the other was high average noise level than normal state ones. Then we also introduced a technique for the direction detection of the fault state insulator using the cross correlation from the three dimensional array microphones. To eliminate the noise signal from unexpected directions, we suggested the zero padding technique in cross correlation function. From these, we could conclude that acoustic fault detection techniques are useful of the detection of insulators' faults and the estimation of the direction of the fault state insulators.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

  • Keum, Mi Hyun;Park, Sung Ho;Ahn, Seung Do;Cho, Woon-Kap
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.695-700
    • /
    • 2013
  • Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4%) included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 ($R{\cdot}m^2/Ci{\cdot}hr$), as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

Measure Radiation and Correct Radiation in IR camera Image (적외선 카메라를 이용한 복사량 계측 및 교정 연구)

  • Jeong, Jun-Ho;Kim, Jae-Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.57-67
    • /
    • 2015
  • The concept of detection and classification of objects based on infrared camera is widely applied to military applications. While the object detection technology using infrared images has long been researched and the latest one can detect the object in sub-pixel, the object classification technology still needs more research. In this paper, we present object classification method based on measured radiant intensity of objects such as target, artillery, and missile using infrared camera. The suggested classification method was verified by radiant intensity measuring experiment using black body. Also, possible measuring errors were compensated by modelling-based correction for accurate radiant intensity measure. After measuring radiation of object, the model of radiant intensity is standardized based on theoretical background. Based on this research, the standardized model can be applied to the object classification by comparing with the actual measured radiant intensity of target, artillery, and missile.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF