• Title/Summary/Keyword: Radiation effect

Search Result 3,593, Processing Time 0.038 seconds

Effect of Scatter ray in Outside Telecobalt-60 Field Size (코발트-60 조사야 밖의 장기에 미치는 2차선의 영향)

  • Kim, You-Hyun;Kim, Young-Whan
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest estimating organ dose. We have made measurements of dose at distances up to 70 cm from the central axis of $5{\times}5$, $10{\times}10$, $15{\times}15$, and $25{\times}25$ cm radiation fields of Co-60 ${\gamma}-ray$, at 5 cm depth in water. Contributions to the total secondary radiation dose from water scatter, machine (collimator) scatter and leakage radiation have been seperated. We have found that the component of dose from water scatter can be described by simple exponential function of distance from the central axis of the radiation field for all field sizes. Machine scatter contributes 20 to 60% of the total secondary dose depending on field size and distance from the field. Leakage radiation contributes very little dose, but becomes the dominant componant at distance beyond 40 cm from the central axis. Then, wedges can cause a factor 2 to 3 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  • PDF

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu;Na Hye Kwon;Sang-Rok Kim;Young Jin Won;Kum Bae Kim;Se Byeong Lee;Cheol Ha Baek;Sang Hyoun Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2317-2323
    • /
    • 2024
  • Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

Angiopoietin-1 Is An Radiation-induced Apoptosis Survival Factor for Human Umbilical Vein Endothelial Cells (방사선을 조사한 혈관내피세포에 대한 Angiopoietin-1의 방사선 방어 기작)

  • Lee, Song-Jae;Chang, Chae-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.166-173
    • /
    • 2000
  • Angiopoietin-1(Ang-1) is a vasculogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. We examined the effect of angiopoietin-1(Ang-1) on radiation-induced apoptosis in human umbilical vein endothelial cells(HUVECS) and receptor/second messenger signal transduction pathway for Ang-1's effect on HUVECs. The percent of apoptotic cells under control condition(0Gy) was $8.2\%$. Irradiation induced apoptosis was increased in a dose(1, 5, 10, and 15Gy)- and time 12, 24, 48 and 72hr)-dependent manner. The percent of apoptotic cells was approximately $34.9\%$ after 15 Gy of irradiation. Under these conditions, pretreatment with Ang-1's (50, 100, 200, and 400 ng/ml) inhibited irradiation-induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner. Two hundred ng/ml of Ang-1 inhibited approximately $55-60\%$ of the apoptotic events that occurred in the 10 Gy-irradiated cells. Pre-treatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang-1's antiapoptotic effects. Phosphatidylinositol 3'-kinase (P13-kinase) specific inhibitor, wortmanin and LY294002, blocked the Ang-1-induced antiapoptotic effect. Ang-1 promotes the survival of endothelial cells in irradiation-induced apoptosis through Tie2 receptor binding and P13-kinase activation. Pretreatment of Ang-1 could be beneficial in maintaining normal endothelial cell integrity during irradiation therapy.

  • PDF

The Influence of Cardiovascular system caused by warming effect of Far-infrared radiation

  • Lee, Hai-Kwang;Kang, Se-Gu;Lee, Chung-Keun;Jang, Yoon-Ho;Kim, Sung-Joong;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2221-2225
    • /
    • 2003
  • As a result of using a heat generator to experiment the physiological influence of the human body due to the warming effect of far-infrared radiation (FIR), the blood pressure of the subjects lowered and stabilized due the expansion of capillary vessels and salt discharge during perspiration as the temperature of the generator elevated($30{\sim}65^{\circ}C$). In case of heart rate, it decreased and stabilized when the temperature of the ‘far-infrared radiation heat generator’ was at a low temperature below $40^{\circ}C$. At a high temperature above $44^{\circ}C$, there was a slow elevation in the heart rate. However, the elevation of the heart rate is not a sudden elevation, therefore, does not give much stress to the heart.

  • PDF

RADIOPROTECTIVE EFFECT OF ALGIN-OLIGOSACCHARIDE THROUGH MEASURING CASPASE-3 AND CASPASE-9 IN MICE

  • Choi, Seong-Kwan;Jung, Woon-Kwan;Lee, Kyu-Soo;Jang, Young-Il;Dong, Kyeong-Rae
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.134-139
    • /
    • 2007
  • In order to find out the Radioprotective effect of algin-oligosaccharide(AOS), this study, with a mouse of which whole frame irradiated by 3 Gy radiation once, measured caspase-3 and caspase-9 amid cell signaling connected to apoptosis in order to observe cell activation. In Caspase-3 and Caspase-9 test for observing cell activation, both of Caspase-3 and Caspase-9 showed highly increased O.D. value in the irradiation control group, while the whole groups treated with algin-oligosaccharide before or after irradiation indicated lower O.D. value than the irradiation control group, especially showed big difference in 7 day's treatment group of before irradiation (P<0.001). It confirmed that Caspase generation was restrained in AOS treatment group. Consequently, this study inquired into the fact that algin-oligosaccharide with superior antioxidant activity performed radiation protection by inducing restraint of Caspase generation and confirmed that natural product with less chemical toxicity was able to be applied as radioprotector.

The Effect of Gamma ray irradiation on Paper Properties (감마선 조사처리가 지류의 물성에 미치는 영향)

  • Jeong, Hye-Young;Choi, Kyoung-Hwa;Park, Ji-Hee;Jung, Pil-Mun;Choi, Jong-Il
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Recently, the use of fumigants for pest control of paper cultural heritages are limited because of the high toxicity of fumigants and the production of environment-harmfully compounds. Therefore, many non-chemical methods have been discussed and experimented. And it is recently focused on gamma radiation, which is one of non-chemical methods, for pest control of paper cultural heritage in Korea. In this paper, we carried out a gamma ray irradiation of papers including Hanji, copy paper, filter paper and then analyzed a physical properties and optical properties of paper sample to estimate the effect of gamma ray irradiation on paper properties. In result, gamma radiation have adverse effect on a physical properties and optical properties of paper, especially Hanji. Therefore, we have to carefully consider about using of gamma ray for pest control of paper cultural heritages.

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(I): TOTAL IONIZING DOSE EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(I)- TOTAL IONIZING DOSE 영향 중심으로 -)

  • 백명진;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • In this paper, space radiation environment and total ionizing dose(TID) effect have been analyzed for the KOMPSAT-2 operational orbit. It has been revealed that the trapped protons are concentrated in the SAA(South Atlantic Anomaly) area and that the trapped protons and electrons, and solar protons are main factors affecting TID. It turned out that low energy Particles can be effectively blocked by aluminum shielding thickness, but high energy Particles can not be effectively blocked by increasing aluminum shielding thickness. KOMPSAT-2 total radiation dose which is accumulated continuously to spacecraft electronics has been expressed as the function of aluminum thickness. These values ran be used as the criteria for the selection of electronic parts and shielding thinkness of the KOMPSAT-2 structure or electronic box.

  • PDF

Investigation of Different Factors Affecting the Electron Spin Resomance-based Characterization of Gamma-irradiated Fresh, White, and Red Ginseng

  • Ahn, Jae-Jun;Akram, Kashif;Jo, Deok-Jo;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.308-313
    • /
    • 2012
  • Fresh (raw roots), white (dried), and red (steamed-drid) ginseng samples were gamma-irradiated at 0 to 7 kGy. Electron spin resonance (ESR) technique was used to characterize the irradiation status of the samples, targeting the radiation-induced cellulose radicals after different sample pretreatments. All non-irradiated samples exhibited a single central signal (g=2.006), whose intensity showed significant increase upon irradiation. The ESR spectra from the radiation-induced cellulose radicals, with two side peaks (g=2.0201 and g=1.9851) equally spaced (${\pm}3mT$) from the central signal, were also observed in the irradiated samples. The core sample analyzed after alcoholic-extraction produced the best results for irradiated fresh ginseng samples. In the case of irradiated white and red ginseng samples, the central (natural) and radiation-induced (two-side peaks corresponding to cellulose radical) signal intensities showed little improvement on alcoholic-extraction. The water-washing step minimized the effect of $Mn^{2+}$, but reduced the intensity of side peaks making them difficult to indentify. The effect of different origins was negligible, however harvesting year showed a clear effect on radiation-induced ESR signals.

Effect of D-(+)-Glucose on the Stability of Polyvinyl Alcohol Fricke Hydrogel Three-Dimensional Dosimeter for Radiotherapy

  • Yang, Yuejiao;Chen, Jie;Yang, Liming;Chen, Bin;Sheng, Zhenmei;Luo, Wenyun;Sui, Guoping;Lu, Xun;Chen, Jianxin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.608-612
    • /
    • 2016
  • D-(+)-glucose (Glc) was added to the original Fricke polyvinyl alcohol-glutaraldehyde-xylenol orange (FPGX) hydrogel dosimeter system to make a more stable FPGX hydrogel three-dimensional dosimeter in this paper. Polyvinyl alcohol was used as a substrate, which was combined with Fricke solution. Various concentrations of Glc were tested with linear relevant fitting for optimal hydrogel production conditions. The effects of various formulations on the stability and sensitivity of dosimeters were evaluated. The results indicated that D-(+)-Glc, as a free radical scavenger, had a great effect on stabilizing the dose response related to absorbency and reducing the auto-oxidization of ferrous ions. A careful doping with Glc could slow down the color change of the dosimeter before and after radiation without any effect on the sensitivity of the dosimeter.