DOI QR코드

DOI QR Code

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu (Radiation Therapy Technology and Standards, Korea Institute of Radiological and Medical Sciences) ;
  • Na Hye Kwon (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Sang-Rok Kim (Radiation Safety Section, Korea Institute of Radiological and Medical Sciences) ;
  • Young Jin Won (Department of Radiation Oncology, Uijeongbu Eulji Medical Center, Eulji University) ;
  • Kum Bae Kim (Radiation Therapy Technology and Standards, Korea Institute of Radiological and Medical Sciences) ;
  • Se Byeong Lee (Proton Therapy Center, National Cancer Center) ;
  • Cheol Ha Baek (Department of Radiological Science, Kangwon Nation University) ;
  • Sang Hyoun Choi (Radiation Therapy Technology and Standards, Korea Institute of Radiological and Medical Sciences)
  • Received : 2023.09.18
  • Accepted : 2024.01.28
  • Published : 2024.06.25

Abstract

Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant (No.2020M2D9A309417021) & the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No.2205013) & National Research Council of Science & Technology (NST) grant by the Korean government (MSIT) (No. CAP22041-000).

References

  1. D.T. Tai, T.T.H. Loan, A. Sulieman, N. Tamam, H. Omer, D.A. Bradley, Measurement of neutron dose equivalent within and outside of a LINAC treatment vault using a neutron survey meter, Quantum Beam Science 5 (4) (2021) 33, https://doi.org/10.3390/qubs5040033.
  2. H. Yucel, I. Cobanbas,, A. Kolbas,i, A.O. Yuksel, V. Kaya, Measurement of photo-neutron dose from an 18 MV medical linac by using foil activation method in view of radiation protection of patients, Nucl. Eng. Technol. 48 (2) (2016) 525-532, https://doi.org/10.1016/j.net.2015.11.003.
  3. M. Bieniasiewicz, A. Konefal, J. Wendykier, A. Orlef, Measurements of thermal and resonance neutron fluence and induced radioactivity inside bunkers of medical linear accelerators in the center of oncology in Opole, Poland, Acta Phys. Pol. B 47 (2016) 771-776, https://doi.org/10.5506/APhysPolB.47.771.
  4. A. Konefal, A. Orlef, M. Dybek, Z. Maniakowski, K. Polaczek-Grelik, W. Zipper, Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac, Phys. Med. 24 (4) (2008) 212-218, https://doi.org/10.1016/j.ejmp.2008.01.014.
  5. A. Konefal, S. Blamek, A. Wronska, A. Orlef, M. Sokol, M. Tajstra, M. Gasior, Radioactivity induced in new-generation cardiac implantable electronic devices during high-energy X-ray irradiation, Appl. Radiat. Isot. 163 (2020) 109206, https://doi.org/10.1016/j.apradiso.2020.109206.
  6. N.H. Kwon, D.O. Shin, J. Kim, J. Yoo, M.S. Park, K.B. Kim, D.W. Kim, S.H. Choi, Current status of disposal and measurement analysis of radioactive components in linear accelerators in Korea, Nucl. Eng. Technol. 54 (2) (2022) 507-513, https://doi.org/10.1016/j.net.2021.11.002.
  7. S. Kaya, N. Celik, T. Bayram, Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency, Nucl. Instrum. Methods Phys. Res., Sect. A 1029 (2022) 166401, https://doi.org/10.1016/j.nima.2022.166401.
  8. B.K. Seo, K.Y. Lee, Y.Y. Yoon, K.W. Lee, Manufacture of a gamma-ray source using the neutron activation and determination of a HPGe detector efficiency, Journal of Radiation Protection and Research 29 (1) (2004) 17-23, 2G704-001034.2004.29.1.004.
  9. B. K Seo, K.Y. Lee, Y.Y. Yoon, K.J. Jung, W.Z. Oh, K.W. Lee, Variation of the detection efficiency of a HPGe detector with the density of the sample in the radioactivity analysis, Analytical Science and Technology 18 (1) (2005) 59-62.
  10. Z.N. Tian, X.P. Ouyang, Y. Liu, L. Chen, J.L. Liu, X.P. Zhang, J.W. Song, M. Zeng, Self-attenuation corrections calculated by LabSOCS Simulations for gamma-spectrometric measurements with HPGe detectors, Chin. Phys. C 38 (7) (2014) 07600, https://doi.org/10.1088/1674-1137/38/7/076002.
  11. W. Khan, C. He, Y. Cao, Calculation of self-absorption and coincidence summing correction factors for the extended sources using GEANT4, Radioprotection 54 (2) (2019) 133-140, https://doi.org/10.1051/radiopro/2019006.
  12. S. Hurtado, M. Villa, An intercomparison of Monte Carlo codes used for in-situ gamma-ray spectrometry, Radiat. Meas. 45 (8) (2010) 923-927, https://doi.org/10.1016/j.radmeas.2010.06.001.
  13. E. Andreotti, M. Hult, G. Marissens, G. Lutter, A. Garfagnini, S. Hemmer, K. von Sturm, Determination of dead-layer variation in HPGe detectors, Appl. Radiat. Isot. 87 (2014) 331-335, https://doi.org/10.1016/j.apradiso.2013.11.046.
  14. W. Khan, Q. Zhang, C. He, M. Saleh, Monte Carlo simulation of the full energy peak efficiency of an HPGe detector, Appl. Radiat. Isot. 131 (2018) 67-70, https://doi.org/10.1016/j.apradiso.2017.11.018.
  15. N.Q. Huy, The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector, Nucl. Instrum. Methods Phys. Res., Sect. A 621 (1-3) (2010) 390-394, https://doi.org/10.1016/j.nima.2010.05.007.
  16. K. Debertin, R. Jianping, Measurement of the activity of radioactive samples in Marinelli beakers, Nucl. Instrum. Methods Phys. Res., Sect. A 278 (2) (1989) 541-549, https://doi.org/10.1016/0168-9002(89)90877-2.
  17. T.S. Park, W.J. Jeon, Measurement of radioactive samples in Marinelli beakers by gamma-ray spectrometry, J. Radioanal. Nucl. Chem. 193 (1995) 133-144, https://doi.org/10.1007/bf02041927.
  18. ANSI/ANS-6.1.1-1977 (N666), American National Standard Neutron and Gamma-Ray Flux-To-Dose-Rate Factors.
  19. M. Mohebian, R. Pourimani, S.M. Modarresi, Using MCNP simulation for self-absorption correction in HPGe spectrometry of soil samples, Iran. J. Sci. Technol. Trans. A-Science 43 (2019) 3047-3052, https://doi.org/10.1007/s40995-019-00775-5.
  20. U. Esra, Attenuation effect of sample container in radioactivity measurement by gamma-ray spectroscopy, Gazi University Journal of Science Part A: Engineering and Innovation 9 (4) (2022) 482-489, https://doi.org/10.54287/gujsa.1193047.
  21. M.L. Smith, L. Bignell, D. Alexiev, L. Mo, J. Harrison, Evaluation of lead shielding for a gamma-spectroscopy system, Nucl. Instrum. Methods Phys. Res., Sect. A 589 (2) (2008) 275-279, https://doi.org/10.1016/j.nima.2008.02.050.