Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant (No.2020M2D9A309417021) & the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No.2205013) & National Research Council of Science & Technology (NST) grant by the Korean government (MSIT) (No. CAP22041-000).
References
- D.T. Tai, T.T.H. Loan, A. Sulieman, N. Tamam, H. Omer, D.A. Bradley, Measurement of neutron dose equivalent within and outside of a LINAC treatment vault using a neutron survey meter, Quantum Beam Science 5 (4) (2021) 33, https://doi.org/10.3390/qubs5040033.
- H. Yucel, I. Cobanbas,, A. Kolbas,i, A.O. Yuksel, V. Kaya, Measurement of photo-neutron dose from an 18 MV medical linac by using foil activation method in view of radiation protection of patients, Nucl. Eng. Technol. 48 (2) (2016) 525-532, https://doi.org/10.1016/j.net.2015.11.003.
- M. Bieniasiewicz, A. Konefal, J. Wendykier, A. Orlef, Measurements of thermal and resonance neutron fluence and induced radioactivity inside bunkers of medical linear accelerators in the center of oncology in Opole, Poland, Acta Phys. Pol. B 47 (2016) 771-776, https://doi.org/10.5506/APhysPolB.47.771.
- A. Konefal, A. Orlef, M. Dybek, Z. Maniakowski, K. Polaczek-Grelik, W. Zipper, Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac, Phys. Med. 24 (4) (2008) 212-218, https://doi.org/10.1016/j.ejmp.2008.01.014.
- A. Konefal, S. Blamek, A. Wronska, A. Orlef, M. Sokol, M. Tajstra, M. Gasior, Radioactivity induced in new-generation cardiac implantable electronic devices during high-energy X-ray irradiation, Appl. Radiat. Isot. 163 (2020) 109206, https://doi.org/10.1016/j.apradiso.2020.109206.
- N.H. Kwon, D.O. Shin, J. Kim, J. Yoo, M.S. Park, K.B. Kim, D.W. Kim, S.H. Choi, Current status of disposal and measurement analysis of radioactive components in linear accelerators in Korea, Nucl. Eng. Technol. 54 (2) (2022) 507-513, https://doi.org/10.1016/j.net.2021.11.002.
- S. Kaya, N. Celik, T. Bayram, Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency, Nucl. Instrum. Methods Phys. Res., Sect. A 1029 (2022) 166401, https://doi.org/10.1016/j.nima.2022.166401.
- B.K. Seo, K.Y. Lee, Y.Y. Yoon, K.W. Lee, Manufacture of a gamma-ray source using the neutron activation and determination of a HPGe detector efficiency, Journal of Radiation Protection and Research 29 (1) (2004) 17-23, 2G704-001034.2004.29.1.004.
- B. K Seo, K.Y. Lee, Y.Y. Yoon, K.J. Jung, W.Z. Oh, K.W. Lee, Variation of the detection efficiency of a HPGe detector with the density of the sample in the radioactivity analysis, Analytical Science and Technology 18 (1) (2005) 59-62.
- Z.N. Tian, X.P. Ouyang, Y. Liu, L. Chen, J.L. Liu, X.P. Zhang, J.W. Song, M. Zeng, Self-attenuation corrections calculated by LabSOCS Simulations for gamma-spectrometric measurements with HPGe detectors, Chin. Phys. C 38 (7) (2014) 07600, https://doi.org/10.1088/1674-1137/38/7/076002.
- W. Khan, C. He, Y. Cao, Calculation of self-absorption and coincidence summing correction factors for the extended sources using GEANT4, Radioprotection 54 (2) (2019) 133-140, https://doi.org/10.1051/radiopro/2019006.
- S. Hurtado, M. Villa, An intercomparison of Monte Carlo codes used for in-situ gamma-ray spectrometry, Radiat. Meas. 45 (8) (2010) 923-927, https://doi.org/10.1016/j.radmeas.2010.06.001.
- E. Andreotti, M. Hult, G. Marissens, G. Lutter, A. Garfagnini, S. Hemmer, K. von Sturm, Determination of dead-layer variation in HPGe detectors, Appl. Radiat. Isot. 87 (2014) 331-335, https://doi.org/10.1016/j.apradiso.2013.11.046.
- W. Khan, Q. Zhang, C. He, M. Saleh, Monte Carlo simulation of the full energy peak efficiency of an HPGe detector, Appl. Radiat. Isot. 131 (2018) 67-70, https://doi.org/10.1016/j.apradiso.2017.11.018.
- N.Q. Huy, The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector, Nucl. Instrum. Methods Phys. Res., Sect. A 621 (1-3) (2010) 390-394, https://doi.org/10.1016/j.nima.2010.05.007.
- K. Debertin, R. Jianping, Measurement of the activity of radioactive samples in Marinelli beakers, Nucl. Instrum. Methods Phys. Res., Sect. A 278 (2) (1989) 541-549, https://doi.org/10.1016/0168-9002(89)90877-2.
- T.S. Park, W.J. Jeon, Measurement of radioactive samples in Marinelli beakers by gamma-ray spectrometry, J. Radioanal. Nucl. Chem. 193 (1995) 133-144, https://doi.org/10.1007/bf02041927.
- ANSI/ANS-6.1.1-1977 (N666), American National Standard Neutron and Gamma-Ray Flux-To-Dose-Rate Factors.
- M. Mohebian, R. Pourimani, S.M. Modarresi, Using MCNP simulation for self-absorption correction in HPGe spectrometry of soil samples, Iran. J. Sci. Technol. Trans. A-Science 43 (2019) 3047-3052, https://doi.org/10.1007/s40995-019-00775-5.
- U. Esra, Attenuation effect of sample container in radioactivity measurement by gamma-ray spectroscopy, Gazi University Journal of Science Part A: Engineering and Innovation 9 (4) (2022) 482-489, https://doi.org/10.54287/gujsa.1193047.
- M.L. Smith, L. Bignell, D. Alexiev, L. Mo, J. Harrison, Evaluation of lead shielding for a gamma-spectroscopy system, Nucl. Instrum. Methods Phys. Res., Sect. A 589 (2) (2008) 275-279, https://doi.org/10.1016/j.nima.2008.02.050.