• Title/Summary/Keyword: Radiation dosage

Search Result 170, Processing Time 0.025 seconds

A Study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection (머리부 전후방향촬영 시 방사선피폭선량 저감을 위한 부가여과판에 대한 연구)

  • Lee, Cho-Hee;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3117-3122
    • /
    • 2011
  • Skull A-P projections are the bi-product where the ESD (Entrance Surface Dose) for digital radiography is much higher than that conventional screen-film radiography. Therefore, the aim of this study was to reduce radiation doses to patients by using an added filter. This research focuses on the identification of the reduction of exposure to radiation based on the thickness of an added filter when applying the 'Skull A-P Projection' by using the 'Skull Phantom'. Also, an experiment was conducted to evaluate the qualitative decline of images through filtration. The measurement of one's exposed dose to radiation was executed by locating the 'Skull Phantom' on the position of the 'Skull AP,' while changing 16 kinds of added filters from 0.1 mmAl to 0.5 mmCu + 2.0 mmAl in terms of incident and penetrating doses. For the qualitative evaluation of images, a total number of 17 images have been acquired in the 'Skull Phantom' under the same conditions as those for the measurement of one's exposed dose. The acquired images have been evaluated by a radiological specialist. As a result, the images with a diagnostic value have been obtained by using such added filters as the compound filter of 0.2 mmCu +1.0 mmAl. The exposed dose absorbed on the 'Skull Phantom' is about 0.6 mGy. The value is only 12% of 5 mGy, the ESD value acquired on the 'Skull P-A Projection', which is recommended by the International Atomic Energy Agency (IAEA). As a result, depending on the parts of inspection, it is possible to reduce the patient's exposed dosage of radiation considerably by using an appropriate added filter.

Beam Spoiler-dependent Total Body Irradiation Dose Assessment (전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가)

  • Lee, Dong-Yeon;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

The effects of low level laser radiation on bacterial growth

  • Chung, Wendy;Petrofsky, Jerrold S.;Laymon, Michael;Logoluso, Jason;Park, Joon;Lee, Judy;Lee, Haneul
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • Objective: The low level lasers currently in the market vary in wavelength, dosage, and frequency. These devices are used with much different clinical pathology. Most notably, some studies claim that wounds heal faster with low level laser therapy due to the fact that bacteria commonly found in wounds are killed by laser light. Systemic and meta-analysis studies found the difficulty of comparison of numerous research studies because of differences in the intensities and frequencies of low level laser treatment (LLLT). The purpose of this study was to determine the effectiveness of LLLT on controlling bacterial growth. Design: Cross-sectional study. Methods: Variables included LLLT dosage and wavelength on 3 bacteria commonly seen in wounds, strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were used on commercially available 5.0-cm agar plates. Blue, green, and red, ultraviolet (UV) and infrared laser light sources were adjusted to either low or high intensity settings. Five Petri dishes at a time were placed directly beneath laser light sources with the exception of UV which was placed six inches below the suspended light and infrared which was placed directly on top of the Petri dish lid. Each group of five Petri dishes was irradiated for 15 minutes. Results: The results showed no effect of any of 9 different LLLT intensities or colors on bacteria growth compared to sham light. Conclusions: At least for claims of bacterial growth inhibition with LLLT, no support for this claim can be found here.

Radiation Effect of X-Ray and Thermal Neutron on Robinia pseudoacacia L. and Some Other Species (아까시나무외 몇 수종(樹種)에 대(對)한 X-Ray와 Thermal Neutron의 조사효과(照射効果))

  • Kim, Chung Suk;Lee, Suk Koo;Hyun, Sin Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1973
  • In an effort to improve the major tree species in Korea, the seed of Robinia pseudoacacia, Pinus rigida, Pinus densiflora, Pinus thunbergii and Larix leptolepis were treated with X-ray and thermal neutron at the Brookhaven National Laboratory, and germination rate of the seed and some characteristics of the seedlings from irradiated seed were investigated and the results were summarized as follows. 1. The germination rate of the irradiated seed of Robinia pseudoacacia, Pinus densiflora, Pinus thunbergii and Pinus rigida was decreased, when the irradiation time of thermal neutron increased from 3 hours to 9 hours. The seed of Larix leptolepis was completely died out in all range of irradiation time. 2. The seed of Pinus densiflora, Robinia pseudoacacia and Pinus rigida showed low germination rate, when the dosage of radiation increased in the range of 10,000r-30,000r X-ray. This dosage of radiation was almost lethal to the seed of Pinus thunbergii and Larix leptolepis. 3. The growth rate of radiated Robinia pseudoacacia has been decreased when the dosage of X-ray and thermal neutron increased. However, the trees treated with thermal neutron for 3 hours showed 14.9 percent-increase in seedling height and some thornless individuals appeared in this treatment. 4. Individuals with variegated leaf, rugose leaf and albino were appeared in X-ray and thermal neutron treatment. 5. Abnormal mitosis of somatic cell, cell with two nucleoli, cell with two nuclei and chromosome clump in mitosis of somatic cell were observed in Robinia pseudoacacia irradiated with thermal neutron. 6. Resistanty against pawdery mildew was decreased in Robinia pseudoacacia radiated with X-ray and thermal neutron. 7. Length of stomata did not show any difference however number of stomata per unit area decreased in Robinia pseudoacacia radiated with thermal neutron. The leaves of Robinia pseudoacacia radiated with thermal neutron were thicker than those of non-treated one, but width of palisade tissue was decreased. The most sensitive one among those species to the thermal neutron treatment was Larix leptolepis, followed by Pinus densiflora, Robinia pseudoacacia, Pinus thunbergii and Pinus rigida in the order. In X-ray treatment, the most sensitive one was Larix leptolepis, followed by Pinus densiflora, Pinus thunbergii, Pinus rigida and Robinia pseudoacacia in the order. Morphological, cytological variation of the radiated Robinia pseudoacacia seemed to indicate some possibility to be used for tree improvement.

  • PDF

Gamma-ray Irradiation on Radio Sensitivity in Cnidium officinale Makino (천궁 돌연변이 유발을 위한 최적 감마선 조사량)

  • Jeong, Jin Tae;Ha, Bo Keun;Han, Jong Won;Lee, Jeong Hoon;Lee, Sang Hoon;Oh, Myeong Won;Park, Chun Geon;Ma, Kyung Ho;Chang, Jae Ki;Kim, Sang Hoon;Kim, Jin Baek;Kang, Si Yong;Ryu, Jai Hyunk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.5
    • /
    • pp.339-346
    • /
    • 2020
  • Background: Cnidium officinale Makino have been used in traditional medicine in Northeast Asia. Although gamma-ray mutagenesis has been used to develop breeding resources with novel characteristics, research on the radiation sensitivity of C. officinale Makino is limited. Hence, the optimal gamma-ray dosage for mutation breeding in C. officinale Makino was investigated. Methods and Results: Seedstocks were exposed to doses of gamma rays (5 Gy - 50 Gy), and subsequently planted in a greenhouse. After 30 days of sowing, the survival rates and growth decreased rapidly at doses above 20 Gy, while all individuals died at 50 Gy. The median lethal dose (LD50) was 25.65 Gy, and the median reduction doses (RD50) for plant height, number of stems, and fresh weight were 12.81, 9.32, and 23.26 Gy, respectively. Post-irradiation levels of malondialdehyde (MDA), peroxidase (POD), and chlorophyll in the aerial parts of the plant were quantified using spectrophotometry. Relative to the controls, the levels of MDA and POD increased, while the level of chlorophyll decreased at doses ≥ 10 Gy, indicating cellular damage. Conclusions: A dose of 20 Gy was found to be optimal for mutation breeding in C. officinale Makino.

Effective Radiologic Doses and Lifetime Attributable Risks in Patients with Trauma Critical Pathway Activation (중증외상환자의 전산화단층촬영 및 중재술에 의한 방사선 유효선량 및 생애 귀속위험도)

  • Lee, Wonhyo;Kong, Taeyoung;Kim, Seunghwan;You, Je Sung;Park, Yoo Seok;Lee, Jae Gil;Chung, Sung Phil
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • Purpose: This study was performed to calculate and analyze the effective radiation doses from computed tomography (CT) and radiologic intervention in patients in the emergency department (ED) with trauma critical pathway (CP) activation and further to estimate the lifetime attributable risks (LARs) for the incidence of and mortality from cancers induced by the radiation dose. Methods: Through a retrospective electrical chart review of 104 injured patients who trauma critical pathway were activated from November 2012 to March 2013, we calculated effective radiologic doses by taking the product of the dose-linear product of the scan and the conversion coefficient. After a determination of the image results, we divided the patients into two groups, negative or positive, and calculated the effective dose for each group. With these results, we estimated the LARs for the incidence of and the mortality from cancers by using the table in the Biologic Effects of Ionizing Radiation (BEIR)-VII report. Results: A total of 76 patients were enrolled. The mean age was $49.0{\pm}8.5$ years. The mean injury severity score (ISS) was $12.7{\pm}8.4$. The cumulative effective dose (CED) for individual patients varied from 2.8 mSv to 238.8 mSv, and the mean was $47.6{\pm}39.9$ mSv. The CED in patients with an $ISS{\geq}16$($63.2{\pm}26.6$ mSv) was higher than that of patients whose ISS<16($33.5{\pm}23.1$ mSv) (p<0.001). The CED in patients who were treated with surgery or intervention($69.0{\pm}45.2$ mSv) was higher than that of patients who were treated conservatively($33.6{\pm}22.4$ mSv) (p<0.001). The LARs for cancer incidence and mortality were $328.5{\pm}308.6$ and $189.0{\pm}159.3$ per 100,000 people, respectively. Conclusion: The CED and the LAR for trauma CP-activated patients in the ED were significant, so efforts should be made to decrease the effective dose received by severely injured patients.

Evaluation of accuracy in the ExacTrac 6D image induced radiotherapy using CBCT (CBCT을 이용한 ExacTrac 6D 영상유도방사선치료법의 정확도 평가)

  • Park, Ho Chun;Kim, Hyo Jung;Kim, Jong Deok;Ji, Dong Hwa;Song, Ju Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.109-121
    • /
    • 2016
  • To verify the accuracy of the image guided radiotherapy using ExacTrac 6D couch, the error values in six directions are randomly assigned and corrected and then the corrected values were compared with CBCT image to check the accurateness of ExacTrac. The therapy coordination values in the Rando head Phantom were moved in the directions of X, Y and Z as the translation group and they were moved in the directions of pitch, roll and yaw as the rotation group. The corrected values were moved in 6 directions with the combined and mutual reactions. The Z corrected value ranges from 1mm to 23mm. In the analysis of errors between CBCT image of the phantom which is corrected with therapy coordinate and 3D/3D matching error value, the rotation group showed higher error value than the translation group. In the distribution of dose for the error value of the therapy coordinate corrected with CBCT, the restricted value of dosage for the normal organs in two groups meet the prescription dose. In terms of PHI and PCI values which are the dose homogeneity of the cancerous tissue, the rotation group showed a little higher in the low dose distribution range. This study is designed to verify the accuracy of ExacTrac 6D couch using CBCT. It showed that in terms of the error value in the simple movement, it showed the comparatively accurate correction capability but in the movement when the angle is put in the couch, it showed the inaccurate correction values. So, if the body of the patient is likely to have a lot of changes in the direction of rotation or there is a lot of errors in the pitch, roll and yaw in ExacTrac correction, it is better to conduct the CBCT guided image to correct the therapy coordinate in order to minimize any side effects.

  • PDF

Effective dose from direct and indirect digital panoramic units

  • Lee, Gun-Sun;Kim, Jin-Soo;Seo, Yo-Seob;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Purpose: This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Materials and Methods: Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. Results: The effective doses of the 4 digital panoramic units ranged between $8.9{\mu}Sv$ and $37.8{\mu}Sv$. By using the head phantom, the effective doses from the direct digital panoramic units ($37.8{\mu}Sv$, $27.6{\mu}Sv$) were higher than those from the indirect units ($8.9{\mu}Sv$, $15.9{\mu}Sv$). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. Conclusion: To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

EFFECTIVE DOSE FROM CONE BEAM CT FOR IMAGING OF MESIODENS (상악 정중과잉치 진단을 위한 cone beam CT의 유효선량)

  • Han, Won-Jeong;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Purpose : This study was aimed to calculate effective dose from cone beam CT and compare effective dose from periapical and panoramic radiography for mesiodens. Materials and Methods : Upper anteiror periapical, panoramic radiography and cone-beam CT were taken for diagnosis of mesiodens. The effective dose were calculated by using an anthropomorphic phantom loaded with thermoluminescent dosimeters at the 23 sites related to sensitive organs. Results : The highest absorbed doses were received by the mandibular body, parotid gland and cheek from periapical, panoramic and cone-beam CT, respectively. The effective doses for periapical, panoramic radiography and cone-beam CT measured 2, 18 and 48 ${\mu}Sv$. Conclusion : Cone-beam CT, although providing additional diagnostic benefits, exposes patients to higher levels of radiation than conventional periapical and panoramic radiography.

Studies on the Rice Stem Borer Control Using Sterile-Male Technique 1. On the Radiosensitivity of Rice Stem Bore. (Chilo suppressalis Walker) (웅성불임을 이용한 이화명충 방제에 관한 연구 1. 이화명충의 방사선 감수성에 관한 연구)

  • Chung K. H.;Ryu J.
    • Korean journal of applied entomology
    • /
    • v.10 no.2
    • /
    • pp.117-120
    • /
    • 1971
  • This experiment was carried out to obtain basic informations on the development in sterile-male technique of rice stem borer. The species considered is Chile suppressalis Walker. Different developmental stages of the insect namely; larval, pupae and adult were irradiated with $Co^{60}$ gamma ray. The results obtained were as follows: 1) A 1:1 sex ratio in the pupal stage was observed. 2) In the pupal stage sub-lethal dosages$(LD_{50})$ were 26 KR and 26.7 KR for female and male, respectively. 3) The total number of egg masses per female increased with the increasing gamma ray dosages and average number of eggs produced per female decreased in the cross between normal female and irradiated male. 4) The sterile dosage $(SD_{90})$ of the gamma ray irradiation showed 23 KR in the male. 5) The pupal stage is most convenient developmental stage for irradiation.

  • PDF