• Title/Summary/Keyword: Radiation detectors

Search Result 292, Processing Time 0.063 seconds

Radiometric Corrections of Digital Remote Sensing Data (원격탐사자료의 放射값 補正)

  • 정성학
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.15-29
    • /
    • 1994
  • Radiometric correction refers to variations in the data that are not caused by the object or scene being scanned. These variations can be caused by differing sensitivities of the detectors of the sensing system, malfunctioning detectors, or atmospheric interference. Radiometric corrections can be applied to correct for these variations, such as for differing sensitivities of detectors (causing striped image), for detectors (resulting in pixels with digital values of zero), or to correct for atmospheric bias due to scattering of radiation. This paper discussed and illustrated some of the important principles of the radiometric correction methods.

A Study on the Germanium Radiation Detector Compensated by Gamma-ray Irradiation

  • Moon, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 1975
  • The n-type germanium crystals have been irradiated by $^{60}$ Co gamma-ray with 647 Mrad at room temperature for compensation. The Ge(${\gamma}$) detectors were fabricated from the gamma-ray irradiated germanium single crystals. The detector characteristics of the Ge (${\gamma}$) detectors were comparable to those of thin Ge(Li) detectors and high purity germanium detectors. The thermal stability of the Ge (${\gamma}$) detector showed a feasibility for ambient temperature storage.

  • PDF

Radiation detector deadtime and pile up: A review of the status of science

  • Usman, Shoaib;Patil, Amol
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1006-1016
    • /
    • 2018
  • Since the early forties, researchers from around the world have been studying the phenomenon of deadtime in radiation detectors. Many have attempted to develop models to represent this phenomenon. Two highly idealized models; paralyzable and non-paralyzable are commonly used by most individuals involved in radiation measurements. Most put little thought about the operating conditions and applicability of these ideal models for their experimental conditions. So far, there is no general agreement on the applicability of any given model for a specific detector under specific operating conditions, let alone a universal model for all detectors and all operating conditions. Further the related problem of pile-up is often confused with the deadtime phenomenon. Much work, is needed to devise a generalized and practical solution to these related problems. Many methods have been developed to measure and compensate for the detector deadtime count loss, and many researchers have addressed deadtime and pulse pile-up. The goal of this article is to summarize the state of science of deadtime; measurement and compensation techniques as proposed by some of the most significant work on these topics and to review the deadtime correction models applicable to present day radiation detection systems.

A Study on the Spatial Resolution of Gas Detectors Based on EGS4 Calculations

  • Moon, B.S.;Han, S.H.;Kim, Y.K.;Chung, C.E.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Results of EGS4 based calculations to study the spatial resolution of gas detectors are described. The calculations include radial distribution of electrons generated by photons of various energies penetrating into variable thickness of Ar and Xe gas layers. Given a desired spatial resolution, the maximum allowed thickness of gas layer for each energy level is determined. In order to obtain 0.1mm spatial resolution, the maximum thickness for the Ar gas is found to be 2mm for photon energies below 14keV while the optimum energy of photons for Xe gas with the same thickness is about 45keV. The results of calculations performed to compare the number of electrons generated by CsI coated micro-channel plate and the number of electrons generated by the Ar and Xe gas layers are described. The results show that the number of electrons generated by the gases is about 10 times higher than the one generated by CsI coated micro-channel plate. A few sample gray scale images generated by these calculations are included.

On the Etching Condition of Cellulose Nitrate Solid State Nuclear Track Detector (SSNTD) (Cellulose Nitrate 고체비적검출기(固體飛跡檢出器)의 부식조건(腐蝕條件))

  • Myung, Dong-Bum;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 1987
  • An experimental study for an optimum etching of commercialized cellulose nitrate SSNTD, CA 80-15 and LR 115-1 for detecting alpha particles, was carried out. Alt-hough ordinary etching condition of the detectors has been recommended by the producer, a remarkable discrepancy in etching tine was found. The detectors were irradiated with a $0.1{\mu}Ci\;^{241}Am$ alpha source under a known geometrical arrangement. Analysis on the track size as functions of etching time and etchant concentration and comparative examination of theoretically predicted number of tracks per unit area with that recorded on the detectors were made, including a study on the variation of detection efficiency with the effective energy of the incident alpha particles.

  • PDF

A Study on the protection of false alarm in the UV/IR flame detector (불꽃 감지기에서 오동작 방지에 관한 연구)

  • Lim, Byung-Hyun;Park, Sung-Jin;Lim, Jong-Yeon;Hwang, Jong-Sun;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.209-212
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults, filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

THE EFFECT OF SURFACE ROUGHNESS OF CSI(TL) MICRO-COLUMNS ON THE RESOLUTION OF THE X-RAY IMAGE; OPTICAL SIMULATION STUDY

  • Kim, Hyun-Ki;Bae, Jun-Hyung;Cha, Bo-Kyung;Jeon, Ho-Sang;Kim, Jong-Yul;Kim, Chan-Kyu;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • Micro-columnar CsI(Tl) is the most popular scintillator material which is used for many indirect digital X-ray imaging detectors. The light scattering at the surface of micro-columnar CsI(Tl) scintillator was studied to find the correlation between the surface roughness and the resultant image resolution of indirect X-ray imaging detectors. Using a commercially available optical simulation program, Light Tools, MTF (Modulation Transfer Function) curves of the CsI(Tl) film thermally evaporated on glass substrate with different thickness were calculated and compared with the experimental estimation of MTF values by the edge X-ray image method and CCD camera. It was found that the standard deviation value of Gaussian scattering model which is determined by the surface roughness of micro-columns could certainly change the MTF value of image sensors. This model and calculation methodology will be beneficial to estimate the overall performance of indirect X-ray imaging system with CsI(Tl) scintillator film for optimum design depending on its application.

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

Development of Gravitational Wave Detection Technology at KASI (한국천문연구원의 중력파 검출기술 개발)

  • Lee, Sungho;Kim, Chang-Hee;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol;Ra, Young-Sik;Gwak, Geunhee;Yoon, Youngdo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2021
  • For the first time in Korea, we are developing technology for gravitational wave (GW) detectors as a major R&D program. Our main research target is quantum noise reduction technology which can enhance the sensitivity of a GW detector beyond its limit by classical physics. Technology of generating squeezed vacuum state of light (SQZ) can suppress quantum noise (shot noise at higher frequencies and radiation pressure noise at lower frequencies) of laser interferometer type GW detectors. Squeezing technology has recently started being used for GW detectors and becoming necessary and key components. Our ultimate goal is to participate and make contribution to international collaborations for upgrade of existing GW detectors and construction of next generation GW detectors. This presentation will summarize our results in 2020 and plan for the upcoming years. Technical details will be presented in other family talks.

  • PDF