DOI QR코드

DOI QR Code

Radiation detector deadtime and pile up: A review of the status of science

  • Usman, Shoaib (Mining and Nuclear Engineering, Missouri University of Science & Technology) ;
  • Patil, Amol (Mining and Nuclear Engineering, Missouri University of Science & Technology)
  • Received : 2018.04.19
  • Accepted : 2018.06.25
  • Published : 2018.10.25

Abstract

Since the early forties, researchers from around the world have been studying the phenomenon of deadtime in radiation detectors. Many have attempted to develop models to represent this phenomenon. Two highly idealized models; paralyzable and non-paralyzable are commonly used by most individuals involved in radiation measurements. Most put little thought about the operating conditions and applicability of these ideal models for their experimental conditions. So far, there is no general agreement on the applicability of any given model for a specific detector under specific operating conditions, let alone a universal model for all detectors and all operating conditions. Further the related problem of pile-up is often confused with the deadtime phenomenon. Much work, is needed to devise a generalized and practical solution to these related problems. Many methods have been developed to measure and compensate for the detector deadtime count loss, and many researchers have addressed deadtime and pulse pile-up. The goal of this article is to summarize the state of science of deadtime; measurement and compensation techniques as proposed by some of the most significant work on these topics and to review the deadtime correction models applicable to present day radiation detection systems.

Keywords

References

  1. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, New Jersey, 2000.
  2. R.D. Evans, The Atomic Nucleus, McGraw-Hill, New York, 1955.
  3. Ortec 996-Timer and Counter, http://www.ortec-online.com/electronics/ctr/996.pdf.
  4. J.W. Muller, Bibliography on Dead Time Effects, 1981. Rapport BIPM-81/11.
  5. T. Akyurek, M. Yousaf, X. Liu, S. Usman, GM counter deadtime dependence on applied voltage, operating temperature and fatigue, Radiat. Meas. (73) (2015) 26-35.
  6. A. Peeva, D. Guleva, Dead time and fatigue in self-quenching G.M. counters at different temperatures, Nucl. Instrum. Meth. 44 (2) (1966) 314-316. https://doi.org/10.1016/0029-554X(66)90166-2
  7. K. Matsuda, J. Sanada, Propagation velocity of an avalanche along the anode wire in a Geiger-Müller counter filled with Q-gas at 1 atm, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 294 (1-2) (1990) 268-270. https://doi.org/10.1016/0168-9002(90)91842-Y
  8. J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, 1964.
  9. M.J. Weber, Selected Papers on Phosphors, LEDs and Scintillators, SPIE Optical Engineering Press, Bellingham, Washington, 1998.
  10. E. Sakai, Recent measurements on scintillator-photodetector systems, IEEE Trans. Nucl. Sci. 34 (1) (1987) 418-422. https://doi.org/10.1109/TNS.1987.4337375
  11. I. Holl, E. Lorenz, G. Mageras, A measurement of the light yield of common inorganic scintillators, IEEE Trans. Nucl. Sci. 35 (1) (1988) 105. https://doi.org/10.1109/23.12684
  12. A.K. Gupta, Sekhar Basu, K.K. Rohatgi-Mukherjee, Substituent positional effect on radiative lifetimes of anthracene sulphonates, Can. J. Chem. 58 (10) (1980) 1046-1050. https://doi.org/10.1139/v80-163
  13. C.J. Horsfield, M.S. Rubery, J.M. Mack, C.S. Young, H.W. Herrmann, S.E. Caldwell, S.C. Evans, T.J. Sedilleo, Y.H. Kim, A. McEvoy, J.S. Milnes, J. Howorth, B. Davis, P.M. O'Gara, I. Garza, E.K. Miller, W. Stoeffl, Z. Ali, Development and characterization of sub-100 ps photomultiplier tubes, Rev. Sci. Instrum. 81 (2010), 10D318-1-10D318-4. https://doi.org/10.1063/1.3475718
  14. G. Bertolini, A. Coche (Eds.), Semiconductor Detectors, Elsevier-North Holland, Amsterdam, 1968.
  15. G. Lutz, Semiconductor Radiation Detectors, Springer, Munich, Germany, 1999.
  16. C. Levert, W. Scheen, Probability fluctuations of discharges in a Geiger Muller counter produced by cosmic radiation, Physica 10 (4) (1943) 225-238. https://doi.org/10.1016/S0031-8914(43)90039-4
  17. W. Feller, On Probability Problems in the Theory of Counters, Courant Anniversary Volume (1948 pp. 105-115), Springer, Switzerland, 2015, pp. 751-759.
  18. G.E. Albert, L. Nelson, Contributions to the statistical theory of counter data, Ann. Math. Stat. 24 (1953) 9-22. https://doi.org/10.1214/aoms/1177729079
  19. L. Takacs, On a probability problem in the theory of counters, Ann. Math. Stat. 29 (4) (1958) 1257-1263. https://doi.org/10.1214/aoms/1177706457
  20. J.W. Muller, A Simple Derivation of the Takacs Formula, 1988. Rapport BIPM-88/3.
  21. J.W. Muller, Generalized dead times, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 301 (3) (1991) 543-551. https://doi.org/10.1016/0168-9002(91)90021-H
  22. S.H. Lee, R.P. Gardner, A new G-M counter dead time model, Appl. Radiat. Isot. 53 (4-5) (2000) 731-737. https://doi.org/10.1016/S0969-8043(00)00261-X
  23. G. Hou, R.P. Gardner, A new G-M counter hybrid dead-time correction model, Radiat. Phys. Chem. 116 (2015) 125-129. https://doi.org/10.1016/j.radphyschem.2015.05.014
  24. A. Patil, S. Usman, Measurement and application of paralysis factor for improved detector dead-time characterization, Nucl. Technol. 165 (2) (2009) 249-269. https://doi.org/10.13182/NT09-A4090
  25. M. Yousaf, T. Akyurek, S. Usman, A comparison of traditional and hybrid radiation detector dead-time models and detector behavior, Prog. Nucl. Energy 83 (1) (2015) 177-185. https://doi.org/10.1016/j.pnucene.2015.03.018
  26. T. Hasegawa, E. Yoshida, T. Yamaya, K. Maruyama, H. Murayama, On-clock non-paralyzable count-loss model, Phys. Med. Biol. 49 (4) (2004) 547-555. https://doi.org/10.1088/0031-9155/49/4/006
  27. P.B. Moon, Recent developments in Geiger-Muller counters, J. Sci. Instrum. 14 (1937) 189-190. https://doi.org/10.1088/0950-7671/14/6/301
  28. Y. Beers, Precision method of measuring Geiger counter resolving times, Rev. Sci. Instrum. 13 (1942) 72-76. https://doi.org/10.1063/1.1769976
  29. Chul-Young Yi, Keeju Jeong, Jang-Jin Oh, A method of dead time measurement, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 551 (2-3) (2005) 352-355. https://doi.org/10.1016/j.nima.2005.06.053
  30. S. Pomme, Cascades of pile-up and dead time, Appl. Radiat. Isot. 66 (6-7) (2008) 941-947. https://doi.org/10.1016/j.apradiso.2008.02.038
  31. S. Pomme, Dead time, pile-up, and counting statistics, ACS (Am. Chem. Soc.) Symp. Ser. 945 (2007) 218-233.
  32. S. Pomme, On the statistical control of loss-free counting and zero dead time spectrometry, J. Radioanal. Nucl. Chem. 257 (3) (2003) 463-466. https://doi.org/10.1023/A:1025455507625
  33. J.W. Muller, Some Remarks of the Galushka Method, 1993. Rapport BIPM 93/2.
  34. A.P. Baerg, Variation on the paired source method of measuring dead time, Metrologia 1 (3) (1965) 131-133. https://doi.org/10.1088/0026-1394/1/3/005
  35. J.W. Muller, On the Evaluation of the Correction Factor m(rho, tau) for the Periodic Pulse Method, 1976. Rapport BIPM 76/3.
  36. E. Schonfeld, H. Janssen, Precise measurement of dead time, Nucl. Instrum. Meth. 339 (1-2) (1994) 137-143. https://doi.org/10.1016/0168-9002(94)91793-0
  37. F.L.R. Vinagre, C.A.N. Conde, Method for effective dead time measurement in counting systems, Nucl. Instrum. Meth. 462 (2) (2001) 555-560. https://doi.org/10.1016/S0168-9002(01)00179-6
  38. M.G. Strauss, L.L. Sifter, F.R. Lenkszus, R. Brenner, Ultra stable reference pulser for high resolution spectrometers, IEEE Trans. Nucl. Sci. 15 (3) (1968) 518-530. https://doi.org/10.1109/TNS.1968.4324977
  39. ICRU Report No. 52, Particle Counting in Radioactivity Measurements, vol. 10, 1994. Bethesda, MD.
  40. J.G.V. Taylor, Approximate Formulae for Extendable Dead Times, Report AECL 5226 (Chalk River), 1975, p. 31.
  41. J.W. Muller, The Source-pulser Method Revisited, 1976, p. 16. Rapport BIPM 76/5.
  42. J.G.V. Taylor, AECL report, 1976.
  43. J. W. Muller, Rapport BIPM 69/3, 1969.
  44. J. W. Muller, Rapport BIPM 69/11, 1969.
  45. E. Funk, Dead time effects from linear amplifiers and discriminators in single detector systems, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 245 (2-3) (1986) 519-524. https://doi.org/10.1016/0168-9002(86)91291-X
  46. J.W. Muller, Dead-time problems, Nucl. Instrum. Meth. 112 (1-2) (1973) 47-57. https://doi.org/10.1016/0029-554X(73)90773-8
  47. P.C. Johns, M.J. Yaffe, Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 255 (3) (1987) 559-581. https://doi.org/10.1016/0168-9002(87)91227-7
  48. M. Wernik, Comparison of several methods proposed for correction of dead time losses in the gamma-ray spectroscopy of very short lived nuclides, Nucl. Instrum. Meth. 95 (1) (1971) 13-18. https://doi.org/10.1016/0029-554X(71)90034-6
  49. O.U. Anders, Experiences with the Ge(Li) detector for high-resolution gamma ray spectrometry and a practical approach to the pulse pileup problem, Nucl. Instrum. Meth. 68 (2) (1969) 205-208. https://doi.org/10.1016/0029-554X(69)90220-1
  50. T. Fazzini, G. Poggi, P. Sona, N. Taccetti, Detailed simulation of pile-up effects in single spectra acquisition, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 356 (2-3) (1995) 319-323. https://doi.org/10.1016/0168-9002(94)01233-4
  51. V. Drndarevic, Elimination of distortions of nuclear energy spectra caused by pulse pile-up, Meas. Sci. Technol. 5 (1994) 1573-1575. https://doi.org/10.1088/0957-0233/5/12/021
  52. V. Drndarevic, P. Ryge, T. Gozani, Digital signal processing for high rate gamma-ray spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 277 (2-3) (1989) 532-536. https://doi.org/10.1016/0168-9002(89)90786-9
  53. G.E. Sjoden, J. Maniscalco, M. Chapman, Recent advances in the use of ASEDRA in post processing scintillator spectra for resolution enhancement, J. Radioanal. Nucl. Chem. 291 (2) (2012) 365-371. https://doi.org/10.1007/s10967-011-1335-0
  54. M.W. Rawool-Sullivan, J.K. Mattingly, D.J. Mitchell, J.D. Hutchinson, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 2012. NSS/MIC 2012; Anaheim, CA.

Cited by

  1. A stochastic differential equation for neutron count with detector dead time and applications to the Feynman-α formula vol.128, pp.None, 2018, https://doi.org/10.1016/j.anucene.2019.01.017
  2. High rate diffusion-scale approximation for counters with extendable dead time vol.51, pp.6, 2018, https://doi.org/10.1016/j.net.2019.04.015
  3. The impact of sensitive volume thickness for silicon on insulator microdosimeters in hadron therapy vol.65, pp.3, 2018, https://doi.org/10.1088/1361-6560/ab623f
  4. Single crystal HPGe (80%) versus BGO shielded CLOVER detector for high precision decay rate measurements: a comparative study vol.323, pp.3, 2018, https://doi.org/10.1007/s10967-019-06748-7
  5. Advanced algorithms for retrieving pileup peaks of digital alpha spectroscopy using antlions and particle swarm optimizations vol.31, pp.4, 2018, https://doi.org/10.1007/s41365-020-0745-5
  6. The use of pXRF for light element geochemical analysis: a review of hardware design limitations and an empirical investigation of air, vacuum, helium flush and detector window technologies vol.20, pp.3, 2018, https://doi.org/10.1144/geochem2019-076
  7. Experimental evaluation of the deadtime phenomenon for GM detector: deadtime dependence on operating voltages vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-75310-3
  8. Monte Carlo model validation of a detector system used for Positron Emission Particle Tracking vol.993, pp.None, 2018, https://doi.org/10.1016/j.nima.2021.165073
  9. Dead time model for X-ray photon counting detectors with retrigger capability vol.994, pp.None, 2018, https://doi.org/10.1016/j.nima.2021.165087
  10. Measuring deadtime and double-counts in a non-paralyzable scintillating neutron detector using arrival time statistics vol.1001, pp.None, 2021, https://doi.org/10.1016/j.nima.2021.165270
  11. Recommendations for the selection of in situ measurement techniques for radiological characterization in nuclear/radiological installations under decommissioning and dismantling processes vol.137, pp.None, 2021, https://doi.org/10.1016/j.pnucene.2021.103761
  12. Simultaneous experimental evaluation of pulse shape and deadtime phenomenon of GM detector vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-81571-3