Browse > Article
http://dx.doi.org/10.1016/j.net.2018.06.014

Radiation detector deadtime and pile up: A review of the status of science  

Usman, Shoaib (Mining and Nuclear Engineering, Missouri University of Science & Technology)
Patil, Amol (Mining and Nuclear Engineering, Missouri University of Science & Technology)
Publication Information
Nuclear Engineering and Technology / v.50, no.7, 2018 , pp. 1006-1016 More about this Journal
Abstract
Since the early forties, researchers from around the world have been studying the phenomenon of deadtime in radiation detectors. Many have attempted to develop models to represent this phenomenon. Two highly idealized models; paralyzable and non-paralyzable are commonly used by most individuals involved in radiation measurements. Most put little thought about the operating conditions and applicability of these ideal models for their experimental conditions. So far, there is no general agreement on the applicability of any given model for a specific detector under specific operating conditions, let alone a universal model for all detectors and all operating conditions. Further the related problem of pile-up is often confused with the deadtime phenomenon. Much work, is needed to devise a generalized and practical solution to these related problems. Many methods have been developed to measure and compensate for the detector deadtime count loss, and many researchers have addressed deadtime and pulse pile-up. The goal of this article is to summarize the state of science of deadtime; measurement and compensation techniques as proposed by some of the most significant work on these topics and to review the deadtime correction models applicable to present day radiation detection systems.
Keywords
Deadtime; Nonparalyzable; Paralyzable; Resolving time; Count loss; Pulse pile-up; Hybrid deadtime model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.J. Weber, Selected Papers on Phosphors, LEDs and Scintillators, SPIE Optical Engineering Press, Bellingham, Washington, 1998.
2 E. Sakai, Recent measurements on scintillator-photodetector systems, IEEE Trans. Nucl. Sci. 34 (1) (1987) 418-422.   DOI
3 I. Holl, E. Lorenz, G. Mageras, A measurement of the light yield of common inorganic scintillators, IEEE Trans. Nucl. Sci. 35 (1) (1988) 105.   DOI
4 A.K. Gupta, Sekhar Basu, K.K. Rohatgi-Mukherjee, Substituent positional effect on radiative lifetimes of anthracene sulphonates, Can. J. Chem. 58 (10) (1980) 1046-1050.   DOI
5 C.J. Horsfield, M.S. Rubery, J.M. Mack, C.S. Young, H.W. Herrmann, S.E. Caldwell, S.C. Evans, T.J. Sedilleo, Y.H. Kim, A. McEvoy, J.S. Milnes, J. Howorth, B. Davis, P.M. O'Gara, I. Garza, E.K. Miller, W. Stoeffl, Z. Ali, Development and characterization of sub-100 ps photomultiplier tubes, Rev. Sci. Instrum. 81 (2010), 10D318-1-10D318-4.   DOI
6 G. Bertolini, A. Coche (Eds.), Semiconductor Detectors, Elsevier-North Holland, Amsterdam, 1968.
7 G. Lutz, Semiconductor Radiation Detectors, Springer, Munich, Germany, 1999.
8 C. Levert, W. Scheen, Probability fluctuations of discharges in a Geiger Muller counter produced by cosmic radiation, Physica 10 (4) (1943) 225-238.   DOI
9 W. Feller, On Probability Problems in the Theory of Counters, Courant Anniversary Volume (1948 pp. 105-115), Springer, Switzerland, 2015, pp. 751-759.
10 G.E. Albert, L. Nelson, Contributions to the statistical theory of counter data, Ann. Math. Stat. 24 (1953) 9-22.   DOI
11 L. Takacs, On a probability problem in the theory of counters, Ann. Math. Stat. 29 (4) (1958) 1257-1263.   DOI
12 J.W. Muller, A Simple Derivation of the Takacs Formula, 1988. Rapport BIPM-88/3.
13 T. Hasegawa, E. Yoshida, T. Yamaya, K. Maruyama, H. Murayama, On-clock non-paralyzable count-loss model, Phys. Med. Biol. 49 (4) (2004) 547-555.   DOI
14 J.W. Muller, Generalized dead times, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 301 (3) (1991) 543-551.   DOI
15 S.H. Lee, R.P. Gardner, A new G-M counter dead time model, Appl. Radiat. Isot. 53 (4-5) (2000) 731-737.   DOI
16 G. Hou, R.P. Gardner, A new G-M counter hybrid dead-time correction model, Radiat. Phys. Chem. 116 (2015) 125-129.   DOI
17 A. Patil, S. Usman, Measurement and application of paralysis factor for improved detector dead-time characterization, Nucl. Technol. 165 (2) (2009) 249-269.   DOI
18 M. Yousaf, T. Akyurek, S. Usman, A comparison of traditional and hybrid radiation detector dead-time models and detector behavior, Prog. Nucl. Energy 83 (1) (2015) 177-185.   DOI
19 P.B. Moon, Recent developments in Geiger-Muller counters, J. Sci. Instrum. 14 (1937) 189-190.   DOI
20 Y. Beers, Precision method of measuring Geiger counter resolving times, Rev. Sci. Instrum. 13 (1942) 72-76.   DOI
21 Chul-Young Yi, Keeju Jeong, Jang-Jin Oh, A method of dead time measurement, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 551 (2-3) (2005) 352-355.   DOI
22 S. Pomme, Cascades of pile-up and dead time, Appl. Radiat. Isot. 66 (6-7) (2008) 941-947.   DOI
23 S. Pomme, Dead time, pile-up, and counting statistics, ACS (Am. Chem. Soc.) Symp. Ser. 945 (2007) 218-233.
24 S. Pomme, On the statistical control of loss-free counting and zero dead time spectrometry, J. Radioanal. Nucl. Chem. 257 (3) (2003) 463-466.   DOI
25 E. Schonfeld, H. Janssen, Precise measurement of dead time, Nucl. Instrum. Meth. 339 (1-2) (1994) 137-143.   DOI
26 J.W. Muller, Some Remarks of the Galushka Method, 1993. Rapport BIPM 93/2.
27 A.P. Baerg, Variation on the paired source method of measuring dead time, Metrologia 1 (3) (1965) 131-133.   DOI
28 J.W. Muller, On the Evaluation of the Correction Factor m(rho, tau) for the Periodic Pulse Method, 1976. Rapport BIPM 76/3.
29 F.L.R. Vinagre, C.A.N. Conde, Method for effective dead time measurement in counting systems, Nucl. Instrum. Meth. 462 (2) (2001) 555-560.   DOI
30 M.G. Strauss, L.L. Sifter, F.R. Lenkszus, R. Brenner, Ultra stable reference pulser for high resolution spectrometers, IEEE Trans. Nucl. Sci. 15 (3) (1968) 518-530.   DOI
31 ICRU Report No. 52, Particle Counting in Radioactivity Measurements, vol. 10, 1994. Bethesda, MD.
32 J.G.V. Taylor, Approximate Formulae for Extendable Dead Times, Report AECL 5226 (Chalk River), 1975, p. 31.
33 J.W. Muller, The Source-pulser Method Revisited, 1976, p. 16. Rapport BIPM 76/5.
34 J.G.V. Taylor, AECL report, 1976.
35 J. W. Muller, Rapport BIPM 69/3, 1969.
36 J. W. Muller, Rapport BIPM 69/11, 1969.
37 E. Funk, Dead time effects from linear amplifiers and discriminators in single detector systems, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 245 (2-3) (1986) 519-524.   DOI
38 M. Wernik, Comparison of several methods proposed for correction of dead time losses in the gamma-ray spectroscopy of very short lived nuclides, Nucl. Instrum. Meth. 95 (1) (1971) 13-18.   DOI
39 J.W. Muller, Dead-time problems, Nucl. Instrum. Meth. 112 (1-2) (1973) 47-57.   DOI
40 P.C. Johns, M.J. Yaffe, Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 255 (3) (1987) 559-581.   DOI
41 O.U. Anders, Experiences with the Ge(Li) detector for high-resolution gamma ray spectrometry and a practical approach to the pulse pileup problem, Nucl. Instrum. Meth. 68 (2) (1969) 205-208.   DOI
42 T. Fazzini, G. Poggi, P. Sona, N. Taccetti, Detailed simulation of pile-up effects in single spectra acquisition, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 356 (2-3) (1995) 319-323.   DOI
43 V. Drndarevic, Elimination of distortions of nuclear energy spectra caused by pulse pile-up, Meas. Sci. Technol. 5 (1994) 1573-1575.   DOI
44 V. Drndarevic, P. Ryge, T. Gozani, Digital signal processing for high rate gamma-ray spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 277 (2-3) (1989) 532-536.   DOI
45 G.E. Sjoden, J. Maniscalco, M. Chapman, Recent advances in the use of ASEDRA in post processing scintillator spectra for resolution enhancement, J. Radioanal. Nucl. Chem. 291 (2) (2012) 365-371.   DOI
46 M.W. Rawool-Sullivan, J.K. Mattingly, D.J. Mitchell, J.D. Hutchinson, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 2012. NSS/MIC 2012; Anaheim, CA.
47 J.W. Muller, Bibliography on Dead Time Effects, 1981. Rapport BIPM-81/11.
48 G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, New Jersey, 2000.
49 R.D. Evans, The Atomic Nucleus, McGraw-Hill, New York, 1955.
50 Ortec 996-Timer and Counter, http://www.ortec-online.com/electronics/ctr/996.pdf.
51 T. Akyurek, M. Yousaf, X. Liu, S. Usman, GM counter deadtime dependence on applied voltage, operating temperature and fatigue, Radiat. Meas. (73) (2015) 26-35.
52 A. Peeva, D. Guleva, Dead time and fatigue in self-quenching G.M. counters at different temperatures, Nucl. Instrum. Meth. 44 (2) (1966) 314-316.   DOI
53 K. Matsuda, J. Sanada, Propagation velocity of an avalanche along the anode wire in a Geiger-Müller counter filled with Q-gas at 1 atm, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 294 (1-2) (1990) 268-270.   DOI
54 J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, 1964.