• Title/Summary/Keyword: Radiation degradation

Search Result 290, Processing Time 0.024 seconds

Preparation and Bioevaluation of 177Lu-labelled Anti-CD44 for Radioimmunotherapy of Colon Cancer

  • Lee, SoYoung;Hong, YoungDon;Jung, SungHee;Choi, SunJu
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.187-192
    • /
    • 2015
  • CD44 is a particular adhesion molecule and facilitates both cell-cell and cell-matrix interactions. In particular, splice variants of CD44 are particularly overexpressed in a large number of malignancies and carcinomas. In this study, the $^{177}Lu$-labelled CD44 targeting antibody was prepared and bioevaluated in vitro and in vivo. Anti-CD44 was immunoconjugated with the equivalent molar ratio of cysteine-based DTPA-NCS and radioimmunoconjugated with $^{177}Lu$ at room temperature within 15 minutes. The stability was tested in human serum. An in vitro study was carried out in HT-29 human colon cancer cell lines. For the biodistribution study $^{177}Lu$-labelled anti-CD44 was injected in xenograft mice. Anti-CD44 was immunoconjugated with cysteine-based DTPA-NCS and purified by a centricon filter system having a molecular cut-off of 50 kDa. Radioimmunoconjugation with $^{177}Lu$ was reacted for 15 min at room temperature. The radiolabeling yield was >99%, and it was stable in human serum without any fragmentation or degradation. The radioimmunoconjugate showed a high binding affinity on HT-29 colon cancer cell surfaces. In a biodistribution study, the tumor-to-blood ratio of the radioimmunoconjugate was 43 : 1 at 1 day post injection (p.i) in human colon cancer bearing mice. The anti-CD44 monoclonal antibody for the targeting of colon cancer was effectively radioimmunoconjugated with $^{177}Lu$. The in vitro high immunoactivity of this radioimmunoconjugate was determined by a cell binding assay. In addition, the antibody's tumor targeting ability was demonstrated with very high uptake in tumors. This radioimmunoconjugate is applicable to therapy in human colon cancer with highly expressed CD44.

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Hwang, Dae Yeon;Park, Sangkyu;Lee, Sungbeom;Lee, Seung Sik;Imaizumi, Takato;Song, Young Hun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.693-701
    • /
    • 2019
  • Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape

  • Rajput, M.;Swami, H.L.;Kumar, R.;Bano, A.;Vala, S.;Abhangi, M.;Prasad, Upendra;Kumar, Rajesh;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2586-2591
    • /
    • 2022
  • In the present work, we have irradiated the DI-BSCCO superconducting tapes with the 100 keV deuterium ions to investigate the effect of ion irradiation on their critical current (Ic). The damage simulations are carried out using the binary collision approximation method to get the spatial distribution and depth profile of the damage events in the high temperature superconducting (HTS) tape. The point defects are formed near the surface of the HTS tape. These point defects change the vortex profile in the superconducting tape. Due to the long-range interaction of vortices with each other, the Ic of the tape degrades at the 77 K and self magnetic field. The radiation dose of 2.90 MGy degrades the 44% critical current of the tape. The results of the displacement per atom (dpa) and dose deposited by the deuterium ions are used to fit an empirical relation for predicting the degradation of the Ic of the tape. We include the dpa, dose and columnar defect terms produced by the incident particles in the empirical relation. The fitted empirical relation predicts that light ion irradiation degrades the Ic in the DI-BSCCO tape at the self field. This empirical relation can also be used in neutron irradiation to predict the lifetime of the DI-BSCCO tape. The change in the Ic of the DI-BSCCO tape due to deuterium irradiation is compared with the other second-generation HTS tape irradiated with energetic radiation.

Kinetics study of photo-degradation of poly(Vinyl Chloride) films in presence of organotin(IV) complex derivatives

  • Alaa Mohammed;Mohammed Kadhom;Marwa Fadhil;Alhamzah D. Hameed;Ahmed Imad;Ahmed Alamiery;Muna Bufaroosha;Rahimi M. Yusop;Ali Jawad;Emad Yousif
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.251-260
    • /
    • 2024
  • As polymers became very important in our lives, their negative impact on general health and the environment raised a serious issue. Here, enhancing their life term is presented as a compromise solution between the need and harm. In the study, six PVC films, the plain and five filled with improvers, underwent radiation exposure for 300 hours at room temperature to investigate their photodegradation rates. The modified films were embedded with organotin(IV) complex derivatives (Ph3SnL, Ph2SnL2, Bu3SnL, Bu2SnL2, and Me2SnL2 (where L is levofloxacin)), and their effectiveness was evaluated. The PVC films were compared before and after exposure to various tests including UV-Vis spectroscopy, gel content analysis, theoretical calculations, and EDX microscopy. Findings indicated that the presence of organotin(IV) complex derivatives, particularly Ph3SnL, notably decreased UV light absorbance and the amount of gel content in PVC sheets in comparison to untreated PVC. Furthermore, EDX analysis showed that the PVC-Ph3SnL blend exposed to radiation exhibited the highest chlorine content, reaching 30 %. This blend demonstrated superior efficacy in stabilizing the polymeric materials.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Expression of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Radiation Exposed Small Intestinal Mucosa of the Rat (방사선조사를 받은 흰쥐 소장 점막의 손상과 재생과정 중 금속단백효소 및 억제자의 발현)

  • Kwag, Hyon-Joo;Lee, Kyoung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.66-74
    • /
    • 2003
  • Purpose : The matrix metalloprotelnases (MMPs) are a family of enzymes whose main function is the degradation of the extracellular matrix. Several studies have revealed that MMPs and TIMPS are related to the wound heating process and in photoaging caused by ultraviolet Irradiation. However, the expressions of MMP and TIMP after irradiation have not, to the best of our knowledge, been studied. This study investigates the expressions of MMP-2 and TIMP-2 in rat Intestinal mucosa following irradiation. Materials and Methods : The entire abdomen of Sprague-Dawley rats was irradiated using a single dose method. The rats were sacrificed on day 1, 2, 3, 5, 7 and 14 following irradiation. Histopathological observations were made using hematoxilin & eosin staining. The expressions of MMP-2 and TIMP-2 were examined using immunohistochemistry, Irnrnunoblotting and ELISA. Results : Radiation induced damage associated with atrophic villi, and infiltration of inflammatory cell was observed from the first postirradiation day, and severe tissue damage was observed on the second and the third postirradiation days. An increase in mitosis and the number of regenerating crypts, as evidence of regeneration, were most noticeable on the fifth postirradiation day. From the immunohistochemlstry, the MMP-2 expression was observed from the first postirradiation day, but was most conspicuous on the third and the fifth postirradiation days. The TIMP-2 expression was most conspicuous on the fifth postirradiation day. From the irnrnunoblotting, the MMP-2 expression was strongly positive on the third postirradlatlon day, and that of TIMP-2 showed a strong positive response on the fifth postirradiation day. In ELISA tests, the expressions of MMP-2 and TIMP-2 were increased in the postirradiation groups compared to those of the normal controls, and showed a maximum increase on the fifth postirradiatlon day. These results were statistically significant. Conclusion : The expressions of MMP-2 and TIMP-2 were increased in the intestinal mucosa of the rats following irradiation, and these results correlated with the histopathological findings, such as tissue damage and regeneration. Therefore, this study suggests that MMP-2 and TIMP-2 play roles in the mechanisms of radiation-induced damage and regeneration of intestinal mucosa of rats.

Performance Analysis of Photovoltaic System for Greenhouse (태양광 발전시스템의 발전 성능 분석)

  • Kwon, Sun-Ju;Min, Young-Bong;Choi, Jin-Sik;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.143-152
    • /
    • 2012
  • This study was performed to reduce the operating cost of a greenhouse by securing electric energy required for greenhouse operation. Therefore, it experimentally reviewed the performance analysis of photovoltaic system in terms of maximum amount of generated electric power based on the amount of horizontal solar radiation during daytime. That is to say, the maximum solar radiation at 300, 400, 500, 600, 700, 800 and 900 W. $m^{-2}$, respectively. The amount of momentary electric power of the photovoltaic system at any was about 970 W and we found that the momentary efficiency of the photovoltaic system that was used for this experiment was 97%. In the case of this system, we found that electric power will be generated when amount of horizontal solar radiation is more than 200 W. $m^{-2}$, at minimum. If the amount of horizontal solar radiation is increased, the maximum power generation is also increased. At that time, the maximum efficiencies were 30, 78, 86 and 90%, respectively. However, when the amount of insolation was about 800 W. $m^{-2}$, the maximum power generation tended to be lower than 700 W. $m^{-2}$. The efficiency which caused the maximum electric power was decreased to less than 97% of the momentary generated electric power. When the total amounts of horizontal solar radiation per day were 3.24, 8.10, 10, 90, 12.70, 14.33, 19.53 and $21.48MJ{\cdot}m^{-2}$ respectively, the total amounts of power energy were 0.03, 0.40, 3.60, 4.37, 4.71, 4.70 and 4.91 kWh. And it represented that the total amounts of power energy were either decreased or increased a bit on the border between some solar radiations. The temperature at the back of the array tended to be higher than the temperature at the front but it demonstrated an increased when the amount of solar radiation increased. In the case of this system, the performance of the module in terms of degradation has not been shown yet.

Ultraviolet-ozone irradiation of HPMC thin films: Structural and thermal properties

  • Abdel-Zaher, Nabawia A.;Moselhey, Manal T.H.;Guirguis, Osiris W.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • The aim of the work was to evaluate the effect of ultraviolet-ozone ($UV-O_3$) irradiation with different times on the structure and thermal properties of hydroxypropyl methylcellulose (HPMC) in the form of a thin film to be used as bioequivalent materials according to their important broad practical and medical applications. HPMC thin films were exposed to $UV-O_3$ radiation in air at a wavelength of 184.9 nm.The beneficial effects of this treatment on the crystallinity and amorphousity regions were followed by X-ray diffraction technique and FTIR spectroscopy. Differential scanning calorimetry, thermogravimetric and differntial thermal analyses were used in order to study the thermal properties of HPMC samples following the process of photodegradation. The obtained results indicated that the rate of degradation process was increased with increasing the exposure time. Variations in shape and area of the thermal peaks were observed which may be attributed to the different degrees of crystallinity after exposing the treated HPMC samples. This meant a change in the amorphousity of the treated samples, the oxidation of its chemical linkages on its surface and its bulk, and the formation of free radical species as well as bond formation.

Preparation and Characterizations of Titania Nanotube Thin Films (티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구)

  • Lee, Youngrok;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.652-656
    • /
    • 2011
  • Thin film of titania nanotubes(TNT) and titania nanofilms(TNF) was fabricated by anodizing for the study of the photo-catalytic reaction(PC) and photoelectrocatalytic reaction(PEC). Removal efficiency of methylene blue was investigated by UV radiation on the TNT coated titanium plate. Removal efficiency was increased with longer TNT length. Degradation efficiency of the PEC reaction was less sensitive than that of PC reaction. And Effect of TNT length is relatively small. Titania nanofilms(TNF) showed low efficiency than TNT. The efficiency drop of PC was larger than that of PEC.

Matrix Decomposition for Low Computational Complexity in Orthogonal Precoding of N-continuous Schemes for Sidelobe Suppression of OFDM Signals

  • Kawasaki, Hikaru;Matsui, Takahiro;Ohta, Masaya;Yamashita, Katsumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • N-continuous orthogonal frequency division multiplexing (OFDM) is a precoding method for sidelobe suppression of OFDM signals and seamlessly connects OFDM symbols up to the high-order derivative for sidelobe suppression, which is suitable for suppressing out-of-band radiation. However, it severely degrades the error rate as it increases the continuous derivative order. Two schemes for orthogonal precoding of N-continuous OFDM have been proposed to achieve an ideal error rate while maintaining sidelobe suppression performance; however, the large size of the precoder matrices in both schemes causes very high computational complexity for precoding and decoding. This paper proposes matrix decomposition of precoder matrices with a large size in the orthogonal precoding schemes in order to reduce computational complexity. Numerical experiments show that the proposed method can drastically reduce computational complexity without any performance degradation.