• Title/Summary/Keyword: Radiation View Factor

Search Result 49, Processing Time 0.024 seconds

The Study of Analysis on Water Vapor Condensation on Automobile Headlamp Using the Numerical Model (수치모델을 이용한 자동차 헤드램프 내부의 습기발생 현상 해석 연구)

  • Jung, Young-Guk;Lee, Ju-Han;Oh, Sang-June;Seo, Tae-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.890-896
    • /
    • 2010
  • Increasing styling features for automotive headlamps speed up the focus of understanding condensation at inner surfaces. Water vapor condensation on the inside surface of the headlamp lens is an essential factor that affects secure front view and headlamp life. One of the headlamps of automobile which is one of the most popular in Korea was chosen for the present analysis. In the basis of the experimental data of automobile given by a manufacturer, boundary conditions were defined and free convection of the air inside the headlamp and radiation from the bulb to the other surfaces are considered. As a result, temperature distribution of the inside surface of the headlamp lens are approximately the same as the experimental result.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

Characterization of potassium supplying power of paddy soils by 40K application (40K 자연방사능(自然放射能)을 이용(利用)한 한국답토양(韓國沓土壤)의 가리공급력(加里供給力)에 관(關)한 연구(硏究) (I))

  • Kim, Tai Soon;Han, Kang Wan;Bai, Young Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 1971
  • Using radioactive $^{40}K$ in potassium, a study was conducted to evaluate the potassium supplying power of different soil types developed on different parent materials. A conversion factor based on two parameters namely $\frac{available\;K_{soil}}{total\;K_{soil}}$ and $\frac{K_{plant}}{K_{soil}}$ was developed and found to be closely related to plant response. According to this characterization soils derived from the various parent materials were ranked as basalt >Silla series>gneiss>porphyry>granite${\gg}$schist. From the point of view of potassium response as measured by yield as similar response pattern was observed. That is, soils derived from basalt to be most responsive as compared to the other soils. The variations among the soils may be accounted for to their potassium bearing mineralogical composition and their stability.

  • PDF

Broad Beam Gamma-Ray Spectrometric Studies with Environmental Materials

  • El-Kateb, Abdul-Hamid Hussein
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Background: Gamma-ray spectrometry helps in radiation shielding problems and different applications of radioisotopes. Experimental arrangements including broad beam geometries are widely used. The aim is to investigate and evaluate the ${\gamma}-ray$ spectra via attenuation by environmental materials. Materials and Methods: The photo peak to nominated parts in the ${\gamma}-ray$ spectra and the attenuation coefficients ${\mu}_b/{\rho}$ from broad beam geometries are measured for the materials water, soil, sand and cement at the energies 0.662, 1.25, and 1.332 MeV with a $3{^{\prime}^{\prime}}{\times}3{^{\prime}^{\prime}}$ NaI(Tl) detector. Results and Discussion: The ${\gamma}-ray$ spectra vary according to changes in the effective atomic number $Z_{eff}$ of the attenuator, the photon energy and the solid angle. The peak to total ratios are the most sensitive parts to variations in the experimental conditions and overturn in the region 0.663 MeV to 1.332 MeV. This is indicated as inversion trend. The results are discussed in view of $Z_{eff}$ and the experimental conditions. The intensity build-up is larger at the lower energy and larger scattering angles in agreement with Klein-Nishina formula and other results. The build-up factor B is$${\sim_=}$$1 at high ${\gamma}-energies$ and small scattering angles. Conclusion: The sensitivity to material characteristics decrease gradually from peak: to total, to Compton valley, to Compton plateau ratios. Rigorous collimation is necessary at small energies. Cement, of the largest $Z_{eff}$, is characterized by the maximum broad beam mass attenuation coefficients ${\mu}_b/{\rho}$. The obtained results provide information to decide for the suitable experimental set-up based on aim of the work.

The Experiment of Grid Characteristics for High-voltage Radiography of Chest (흉부촬영시 관전압과 선질에 따른 적절한 격자의 선택을 위한 실험)

  • Kim, Jung-Min;Ahn, Bong-Seon
    • Journal of radiological science and technology
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 1992
  • Grids can improve the diagnostic quality of chest radiography by trapping the greater part of scattered radiation thus providing more detailed. chest radiographic images. It is most effective mathod of reduce the scatter ratio but must increase the expour factor. The benefit of use of grid is improve the contrast and the loss is increase of patient dose. In chest radiography especially hard quality high voltage radiography it will have to be considered to select the optimum grid with view point of benefit and loss. In this experiment, author got some result of characteristics about 4 different grids with film method. 1. There was no difference the scatter ratio in case of no grid and the scatter ratio was about 60%. 2. 16 : 1 grid was excellent of scatter reduction factor in high voltage chest radiography, next was 10 : 1, CROSS, MICRO FINE grid have low scatter reduction rate compare to 16:1, 10:1 grid. 3. The bucky factor of CROSS grid in accordance of kVp was find out the highest in 4 grids, on the contraly 10 : 1 grid was profitable to the exposure does. 4. With careful consideration in the point of scatter reducion rate and bucky factor, author suggest the 10 : 1 linear grid on the use of chest radiography in $80{\sim}120\;kVp$, 16 : 1 grid in $120{\sim}140\;kVp$.

  • PDF

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

Process Simulation of Investment Casting for Large Gas Turbine Component (대형 가스터빈 부품의 정밀주조 응고해석)

  • Seo, Seong-Mun;Jo, Chang-Yong;Lee, Jae-Hyeon;Choe, Seung-Ju
    • 연구논문집
    • /
    • s.29
    • /
    • pp.173-183
    • /
    • 1999
  • The vacuum investment casting process for a large gas turbine component, Inner Preswirl Support (IPS), was simulated by using commercial FEM package ProCAST(TM) with view factor radiation method. The solid fraction in mushy zone was directly measured by Differential thermal analysis(DTA-DSC mode). Three types gating design. considering liquid flow and heat release through it. were proposed. Solidification had begun at the ribs or thin sections of the IPS casting and advanced further through the upper and lower gates. The computed temperature gradient G and G/R values at 70% solidified temperature were used for prediction of microshrinkage formation during casting. The effect of mold preheat on the thermal history of the casting displayed minute effect on the microshrinkage formation.

  • PDF

Temperature Uniformity of the Glass Panel Heated in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1950-1956
    • /
    • 2005
  • An analysis has been carried out to investigate the effect of the reflectivity on the temperature distribution of a glass panel by infrared radiant heating. Halogen lamps are used to heat the panel, located near the top and bottom of the rectangular chamber. The thermal energy is transferred from the lamps to the panel only by radiation and it is considered by using view factor. The conductive transfer is limited inside the panel. The results show that the uniformity of the temperature distribution of the panel is improved and, at the same time, the time for heating increases as the wall reflectivity increases. The temperature difference between the center and the corner reaches a maximum in the early stage of the heating process and then decreases until it reaches a uniform steady-state value.

Air Temperature Differences in Areas with High-rise Buildings (초고층빌딩지역의 기온차)

  • Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.