DOI QR코드

DOI QR Code

초고층빌딩지역의 기온차

Air Temperature Differences in Areas with High-rise Buildings

  • Jin, Wen-Cheng (Dept.of Landscape Architecture, Sungkyunkwan University) ;
  • Lee, Kyoo-Seock (Dept.of Landscape Architecture, Sungkyunkwan University)
  • 투고 : 2011.11.05
  • 심사 : 2012.01.25
  • 발행 : 2012.02.29

초록

최근 들어 서울시를 비롯한 대도시에 건립되는 초고층건물은 주변 공기의 대류를 변화시켜 난류현상을 유발하여 빌딩바람과 도시열섬 및 대기오염 물질 집적 등 주변 환경에 영향을 미치고 있다. 그 중에서도 고층건물의 주변지역의 기온의 공간적 변화는 환경 경사가 심한 것으로 판단된다. 이에 본 연구에서는 서울시 강남구의 초고층건물 지역과 인접 지역의 기온차이를 파악하고자 2008년 3월 16일부터 2009년 3월 15일까지 고정관측과 이동관측을 수행하였다. 타워팰리스(TPL)와 숙명여고(SMG)의 거리는 불과 200m이지만 두 관측지점의 연평균 기온차는 $0.7^{\circ}C$로 관측되었고, TPL의 열대야 일수는 13일, SMG는 5일이었다. TPL의 기온이 다른 곳보다 높은 것은 고층건물에 의한 도로협곡으로 인해 sky view factor가 현저히 낮아 장파복사의 대기 중 방출이 억죄되 도시열섬현상을 가중시키고 냉난방의 단위면적 당 전력 수요가 높아, 이로 인한 인공폐열이 도로협곡에 갇혀 고층건물 지역인 TPL의 열섬현상이 인접 지역보다 높은 것으로 관측되었다.

In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.

키워드

참고문헌

  1. Ahrens, C. D.(2008) Essentials of Meteorology AnInvitation to the Atmosphere(5th ed). Belmont: Thomson/Brooks/Cole.
  2. Bornstein, R. D. (1968) Observations of the urban heat island effect in New York City. Journal of Applied Meteorology 7(4): 575-582. https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2
  3. Chow, W. T. L. and M. Roth (2006) Temporal dynamics of the urban heat island of Singapore. International Journal of Climatology 26(15): 2243-2260. https://doi.org/10.1002/joc.1364
  4. Eliasson, Y.(1996) Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment 30(3): 379-392. https://doi.org/10.1016/1352-2310(95)00033-X
  5. Giridharan, R., S. Ganesan, and S. S. Y. Lau(2004) Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy and Buildings 36(6): 525-534. https://doi.org/10.1016/j.enbuild.2003.12.016
  6. Giridharan, R., S. S. Y. Lau, and S. Ganesan(2005) Nocturnal heat island effect in urban residential developments of Hong Kong. Energy and Buildings 37(9): 964-971. https://doi.org/10.1016/j.enbuild.2004.12.005
  7. Goldreich, Y.(1984) Urban topoclimatology. Progress in Physical Geography 8(3):336-364. https://doi.org/10.1177/030913338400800302
  8. HIOKI E.E Co, cited 2009: Introduction for Humidity Logger 3641-20.
  9. Hui, S. C. M.(2001) Low energy building design in high density urban cities. Renewable Energy 24(3-4): 627-640. https://doi.org/10.1016/S0960-1481(01)00049-0
  10. Klysik, K.(1996) Spatial and seasonal distribution of anthropogenic heat emissions in Lodz, Poland. Atmospheric Environment 30(20): 3397-3404. https://doi.org/10.1016/1352-2310(96)00043-X
  11. Korea Meteorological Administration, cited 2010: Conceptfortropical nights.
  12. Landsberg, H. E.(1981) The Urban Climate. New York : Academic Press.
  13. Montavez, J. P., A. Rodriguez, and J. I. Jimenez(2000) A study of the urban heat island of Grandada. International Journal of Climatology 20(8): 899-911. https://doi.org/10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I
  14. Oke, T. R.(1973) City size and the urban heat island. Atmospheric Environment 7(8): 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  15. Oke, T. R.(1987) Boundary Layer Climates(2nd ed). London: Routledge.
  16. Oke, T. R.(1988) The urban energy balance. Progress in Physical Geography 12(4): 471-508. https://doi.org/10.1177/030913338801200401
  17. Pinho, O. S. and M. D. Manso Orgaz(2000) The urban heat island in a small city in coastal Portugal. International Journal Biometeorology 44(4): 198-203. https://doi.org/10.1007/s004840000063
  18. Rajagopalan, P., N. Wong, and K. Cheong(2008) Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island. Solar Energy 82(8): 727-745. https://doi.org/10.1016/j.solener.2008.02.008
  19. Rizwan, A. M., L. Y. C. Dennis, and C. Liu(2008) A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20(1): 120-128. https://doi.org/10.1016/S1001-0742(08)60019-4
  20. Shashua-bar, L., Y. Tzamir, and M. Hoffman(2004) Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot- humid climate in summer. International Journal of Climatology 24(13): 1729-1742. https://doi.org/10.1002/joc.1092
  21. Svensson, K. M.(2004) Skyview factor analysis - implications for urban air temperature differences. Meteorological Applications 11(3): 201-211. https://doi.org/10.1017/S1350482704001288
  22. Yamashita, S., K. Sekine, M. Shoda, K. Yamashita, and Y. Hara (1986) On relationship between heat island and sky view factor in the cities of Tama river basin, Japan. Atmospheric Environment 20(4): 681-686. https://doi.org/10.1016/0004-6981(86)90182-4
  23. http://www.hioki.com/product/364120/index.html
  24. http://web.kma.go.kr/notify/press/kma_list.jsp?bid=press&mode= view&num=1191120