• Title/Summary/Keyword: Radiation Transport

Search Result 401, Processing Time 0.022 seconds

Design of Compact Microstrip Patch Antenna for Short Distance WLAN (근거리 WLAN을 위한 광대역 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

The Design of Wideband Dipole Antenna using Four Rings (4개의 링 구조를 사용한 광대역 다이폴 안테나 설계)

  • Kim, Sang-Uk;Lee, Woon-Jong;Oh, Su-Hyun;Lee, Cheon-Hee;Park, Hyo-Dal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.53-59
    • /
    • 2011
  • In this paper wideband dipole antenna that is usable as PCS/WCDMA/WiBro/WiMax public relay station antenna is proposed. The proposed antenna that designed by using double ring structure improves bandwidth performance of existing dipole antenna to wideband performance. To verify wideband performance and isotropic radiation pattern of the proposed antenna, simulation and fabrication have progressed its radiation characteristic has measured and then compared with calculated result. Measured result is similar to calculated result and has gain of 2dB VSWR of 2:1 over 1.75~3GHz. It is considered that the dipole antenna that designed in this paper can be usable as PCS/WCDMA/WiBro/WiMax public relay station antenna.

A Study on a Near-Field Reader Antenna for 900 MHz RFID (근접 영역용 900MHz RFID 리더기 안테나에 관한 연구)

  • Park, Joung-Geun;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • In this paper, we propose a new near-field reader antenna for 900 MHz RFID. The proposed antenna consists the micro-strip antenna with the periodic structure. The overall dimension of the antenna is $313mm{\times}152mm{\times}14mm$. The antenna has the uniform E-field distribution in near field region and the heart-shaped radiation beam pattern (Peak gain=-2 dBi). The transmitted power range is from 17 dBm to 23 dBm. We focus on minimizing the detected error by suppressing the reflected power from the metal, which is attached to the surface by tag, and by reducing the transmitted power from tag.

A Study on a Planar Folded RFID Reader Antenna by Minimizing Hand Effects For UHF Band Application (Hand effect를 최소화한 평판 격자형 UHF대역 RFID 리더 안테나에 관한 연구)

  • Park, Joung-Geun;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.80-85
    • /
    • 2012
  • In this paper, a new planar folded UHF band RFID reader antenna is suggested. For the antenna suggested in this paper, 4 PIFA (Planar Inverted F Antenna) micro-strip structures are adopted. The size is $50mm{\times}50mm{\times}6.2mm$. The gain of the antenna is 1.1 dBi, the VSWR is 1.2:1, and the efficiency is 63.3 %. The radiation pattern is designed as upper direction. Identification distance for the RFID tags is improved by minimizing hand effects with properly integrating 4 PIFAs.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea (동아시아의 생체연소 배출물에 대한 한국의 미세먼지 기여도 및 복사 에너지 수지 분석)

  • Lee, Ji-Hee;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.265-282
    • /
    • 2022
  • This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.

Effect on active transport of cell membrane model which irradiated by radiation (방사선이 조사된 세포막 모델이 물질의 능동수송에 미치는 영향)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.103-110
    • /
    • 2011
  • The effect on active transport of $K^+$ and $Na^+$ of cell membrane model which irradiated by radiation was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH $0.5^{-3}$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $7.9{\times}10^{-4}$ to $7.49{\times}10^{-3}mole/cm^2{\cdot}h$ and that of Na+ from $10.6{\times}10^{-4}$ to $7.68{\times}10^{-3}mole/cm^2{\cdot}h$. The initial flux of $K^+$ which was irradiated by radiation was found to be from $35.0{\times}10^{-4}$ to $42.4{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $52.0{\times}10^{-4}$ to $43.3{\times}10^{-3}mole/cm^2{\cdot}h$. The membrane was selective for $K^+$ and the ratio $K^+/Na^+$ was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 4-5 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

Xenon in molten salt reactors: The effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction

  • Price, Terry J.;Chvala, Ondrej;Taylor, Zack
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Xenon behaves differently in molten salt reactors (MSRs) compared to solid fuel reactors. This behavior needs exploring due to the large reactivity effect of the 135Xe isotope, given the current interest in MSR power plant development for commercial deployment. This paper focuses on select topics in xenon transport, reviews relevant past works, and proposes specific research questions to advance the state of the art in each of the focus areas. Specifically, the paper discusses the issue of xenon solubility in MSRs, the behavior of particulates circulating in MSR fuel salt and its influence on the xenon transport, the possibility of ionization of xenon atoms which changes its effective size and thus affects its mass transport, and finally the issue of circulating void fraction and how it is measured. This work presents specific recommendations for MSR designers to research the limits of Henry's law validity, circulating particulate scrubbers, validity of mass transport coefficients in high radiation fields, and the effects of pump speed on circulating void fraction.