• Title/Summary/Keyword: Radiation Shielding

Search Result 613, Processing Time 0.026 seconds

Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: An extensive experimental study

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.666-672
    • /
    • 2024
  • In the present work, a new brick series based on the Vietnamese white clay minerals from the Bat Trang was fabricated to be applied in the radiation protection applications during the decommissioning of the nuclear power reactors. The bricks were constructed under various pressure rates varied from 7.61 MPa to 114.22 MPa. The influence of pressure rate on the physical and γ-ray shielding properties were investigated in the study. The experimental measurement for the material's density using the MH-300A density meter showed an enhancement in the prepared bricks' density by 22.5 % with increasing the applied pressure rate while the bricks' porosity reduced by 31.2 % when the pressure rate increased from 7.61 MPa to 114.22 MPa. The increase in the fabricated bricks density and the reduction in their porosities enhances the bricks' linear attenuation coefficients as measured by the NaI (Tl) detector along the energy range extended from 0.662 MeV to 1.332 MeV. The linear attenuation coefficient increased by 13.8 %, 17.6 %, 17.0 %, and 17.1 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively. The enhancement in the linear attenuation coefficient increases the bricks' radiation protection efficiency by 10.22 %, 14.48 %, 14.09 %, and 14.26 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively.

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

A Study on the Radiation Shielding Analysis for Reinforcing the Hot Cell Regular Concrete Shield Wall (핫셀의 일반 콘크리트 보강을 위한 방사선 차폐해석 연구)

  • 조일제;황용화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.985-990
    • /
    • 2003
  • In order to demonstrate Advanced Spent Fuel Conditioning Process (ACP), shielding facilities such as hot cell suitable to handling radionuclides and process property will be necessary. But the construction of new facilities needs much money, man-power and time, it is now scheduled to remodel the hot cell, which has already been installed and maintained at Irradiated Material Experiment Facility (IMEF) in the Korea Atomic Energy Research Institute (KAERI). The basic structure and concrete shield wall of hot cell partly have been constructed on the base floor in IMEF building in current status. And hot cell after remodeling will be used for carrying out the lab-scale experiment of ACP. The hot cell was built in accordance with 35 curies of fe-59(1.2 MeV) as design criteria of radiation dose limit. But the radioactive source of ACP is expected to be much higher than design criteria of IMEF, shielding ability of the hot cell in the current status is unsatisfactory to the hot test of ACP. Therefore shield wall shall be reinforced with heavy concrete, steel or lead. In this paper, dose rates are calculated according to ACP source, shielding materials, etc., and reinforcement structures are determined considering the current situation of hot cells, installation of shield windows and the easiness of work.

  • PDF

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.

Comparison of Shield of Breast, Thyroid, Eyes for Exposure Dose Reduction in Mammography (유방엑스선검사 시 유방, 갑상샘, 안구 피폭선량 감소를 위한 차폐체 비교)

  • An, Se-Jeong;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.189-194
    • /
    • 2021
  • This study was conducted to reduce the exposure dose to the breast and adjacent organs as the number of Mammography increased. Therefore, it has been designed a shield in lead, bismuth + tungsten, and bismuth that does not require to be equipped by the patient, in which each type of shield was compared and analyzed of radiation exposure dose to breast, thyroid, and eye. Using a mammography machine, optically stimulated luminescent dosimeter(OSLD) was inserted to bilateral breast, thyroid, and eye of a dosimetry phantom to measure dose radiated onto the phantom. Shielding device was made in different thickness of 2mm, 3mm, and 5mm and dose evaluation was performed by measuring the dose while using lead, bismuth, and bismuth + tungsten prosthesis. When each shields combined with shielding device, were compared of dose, all showed similar does reduction in the dose to breast, thyroid, and eye in both cranialcaudal and mediolateraloblique view. Based on the current study, bismuth and bismuth + tungsten can replace conventional lead shield and it is anticipated to safely and conveniently reduce radiation exposure to breast, thyroid, and eye with the shield that does not require to be equipped.

Reduction of Radiation Exposure Dose of Eyeball and Thyroid for Chest and Abdomen CT Scan (흉부 및 복부 CT 검사 시 안구와 갑상선의 방사선 피폭선량 저감)

  • Lee, Jun Seok;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2019
  • In chest and abdomen CT scans, the radiation exposure doses by scattering lines were measured at the eyeball and thyroid. Radiation exposure was investigated by using shielding devices. The chest and abdomen CT scan protocols used in the real examination were applied to measure and compare radiation doses before and after the use of shielding devices at the eyeball and the thyroid. The radiaton doses were measured with OSLD dosimeters. Barium, tungsten sheets, goggles and neck shields were used to protect the scattered X-ray. The chest CT scans showed respectively 3.01 mSv and 6.21 mSv at the eyeball and the thyroid by the scattered X-ray. The abdomen CT scans showed 0.55 mSv and 3.22 mSv for the eyeball and the thyroid respectively. Barium and tungsten sheets had 11% to 13% protection rates at the eyeball and the thyroid for chest CT scan, and 34% to 49% reduction in radiation dose for the abdomen CT scan. Because of the significant radiation dose, which causes cataracts and thyroid cancer by the repeated and continuous radiation exposure, for the chest and the abdomen CT scans, it is required to use shielding devices to reduce radiation dose for examinations.

Impact of testicular shielding in liposarcoma to scrotum by using radio-photoluminescence glass dosimeter (RPLGD): a case report

  • Oonsiri, Puntiwa;Saksornchai, Kitwadee;Suriyapee, Sivalee
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.248-253
    • /
    • 2018
  • Radiation protection in the scrotum to reduce the risk of genetic effect in the future is very important. This study aimed to measure the scrotal dose outside the treatment fields by using the radio-photoluminescence glass dosimeter (RPLGD). The characteristics of RPLGD model GD-302M were studied. Scattered dose to scrotum was measured in one liposarcoma case with the prescribed dose of 60 Gy. RPLGDs were placed in three different locations: one RPLGD was positioned at the posterior area which closer to the scrotum, and the other two RPLGDs were placed between the penis and the scrotum. Three RPLGDs were employed in each location. The scattered doses were measured in every fraction during the whole course of treatment. The entire number of 100 RPLGDs showed the uniformity within ±2%. The signal from RPLGD demonstrated linear proportion to the radiation dose (r = 0.999). The relative energy response correction factor was 1.05. The average scrotal dose was 4.1 ± 0.9 cGy per fraction. The results presented a wide range since there was a high uncertainty during RPLGD placement. The total scrotal dose for the whole course of treatment was 101.9 cGy (1.7% of the prescribed dose). The RPLGD model GD-302M could be used to measure scattered dose after applying the relative energy correction factor.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

Improvement of Shielding for Electromagnetic Compatibility

  • Chien, Tang Tan;Tu, Bui Thi Minh;Do, Tran Nguyen
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.63-69
    • /
    • 2016
  • This paper presents methods to improve the effectiveness of electromagnetic shielding. The slit appears in an enclosure's surface to ventilate. Slits may also appear due to power supply lines or to serve as a communication link between electronic circuits inside and outside the box. We simulated electromagnetic radiation in different conditions in order to propose a method to improve the effectiveness of electromagnetic shielding to ensure electromagnetic compatibility using CST software (Computer Simulation Technology).