DOI QR코드

DOI QR Code

Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: An extensive experimental study

  • Ta Van Thuong (Ural Federal University) ;
  • O.L. Tashlykov (Ural Federal University) ;
  • K.A. Mahmoud (Ural Federal University)
  • Received : 2023.10.05
  • Accepted : 2023.11.01
  • Published : 2024.02.25

Abstract

In the present work, a new brick series based on the Vietnamese white clay minerals from the Bat Trang was fabricated to be applied in the radiation protection applications during the decommissioning of the nuclear power reactors. The bricks were constructed under various pressure rates varied from 7.61 MPa to 114.22 MPa. The influence of pressure rate on the physical and γ-ray shielding properties were investigated in the study. The experimental measurement for the material's density using the MH-300A density meter showed an enhancement in the prepared bricks' density by 22.5 % with increasing the applied pressure rate while the bricks' porosity reduced by 31.2 % when the pressure rate increased from 7.61 MPa to 114.22 MPa. The increase in the fabricated bricks density and the reduction in their porosities enhances the bricks' linear attenuation coefficients as measured by the NaI (Tl) detector along the energy range extended from 0.662 MeV to 1.332 MeV. The linear attenuation coefficient increased by 13.8 %, 17.6 %, 17.0 %, and 17.1 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively. The enhancement in the linear attenuation coefficient increases the bricks' radiation protection efficiency by 10.22 %, 14.48 %, 14.09 %, and 14.26 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively.

Keywords

References

  1. IAEA, International, Principal Safety Standards for Protection from Ionizing Radiation and Safe Handling of Sources of Radiation, vol. 115, Safety Series, Vienna, 1997.
  2. ICRP, Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, IAEA, Vienna, 1991.
  3. ICRP, Recommendations of the International Commission on Radiological Protection, ICRP Publication 26, IAEA, Vienna, 1997.
  4. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP publication 103, Ann. ICRP 37 (2-4) (2007).
  5. V.G. Volkov, YuA. Zverkov, O.P. Ivanov, V.I. Kolyadin, V.D. Muzrukova, V. I. Pavlenko, S.G. Semenov, S.Yu Fadin, A.V. Chesnokov, A.D. Shisha, Radiation protection during decommissioning of the MRT and RFT material-research multi-loop reactors at the national research center - kurchatov institute, Atom. Energy 115 (2013) 123-129, https://doi.org/10.1007/s10512-013-9759-y.
  6. Y.A. Kropachev, O.L. Tashlykov, S.E. Shcheklein, Optimization of radiation protection at the NPP unit decommissioning stage, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika. (2019) (2019) 119-130, https://doi.org/10.26583/npe.2019.1.11.
  7. Yu V. Nosov, A.V. Rovneiko, O.L. Tashlykov, S.E. Shcheklein, Decommissioning features of BN-350, -600 fast reactors, Atom. Energy 125 (2019) 219-223, https://doi.org/10.1007/s10512-019-00470-z.
  8. A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Phys. Atom. Nucl. 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154.
  9. O.L. Tashlykov, A.N. Sesekin, A.G. Chentsov, A.A. Chentsov, Development of methods for route optimization of work in inhomogeneous radiation fields to minimize the dose load of personnel, Energies 15 (2022) 4788, https://doi.org/10.3390/en15134788.
  10. O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies 15 (2022) 8222, https://doi.org/10.3390/en15218222.
  11. IAEA, Radiation Protection and Safety of Radiation Sources, International Basic Safety Standards No, vol. 3, GSR Part, Vienna, 2014.
  12. R.S. Aita, H.A. Abdel Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, K. A. Mahmoud, Gamma-rays attenuation by mineralized siltstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations, Radiat. Phys. Chem. 198 (2022), https://doi.org/10.1016/j.radphyschem.2022.110281.
  13. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  14. O.L. Tashlykov, M.S. Alqahtani, K.A. Mahmoud, The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers, Nucl. Eng. Technol. 54 (2022), https://doi.org/10.1016/j.net.2022.05.014.
  15. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M. S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004, https://doi.org/10.1016/j.radphyschem.2022.110004.
  16. Q. Huang, J. Jiang, L. Glasses, The gamma-ray and neutron shielding factors of flyash brick materials the gamma-ray and neutron shielding factors of fly-ash brick materials, J. Radiol. Prot. 34 (2014) 89-101, https://doi.org/10.1088/0952-4746/34/1/89.
  17. K.A. Mahmoud, O.L. Tashlykov, M.H.A. Mhareb, A.H. Almuqrin, Y.S.M. Alajerami, M.I. Sayyed, A new heavy-mineral doped clay brick for gamma-ray protection purposes, Appl. Radiat. Isot. 173 (2021), 109720, https://doi.org/10.1016/j.apradiso.2021.109720.
  18. K.A. Mahmoud, A.M.A. El-Soad, E.G. Kovaleva, N. Almousa, M.I. Sayyed, O. L. Tashlykov, Modeling a three-layer container based on halloysite nano-clay for radioactive waste disposal, Prog. Nucl. Energy 152 (2022), https://doi.org/10.1016/j.pnucene.2022.104379.
  19. O.L. Tashlykov, A.P. Khomyakov, S.V. Mordanov, V.P. Remez, Ion-selective Treatment as a Method for Increasing the Efficiency of Liquid Radioactive Waste Reducing in Accordance with Acceptance Criteria for Disposal, 2021, 020032, https://doi.org/10.1063/5.0068413.
  20. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001.
  21. S. Akbulut, A. Sehhatigdiri, H. Eroglu, S. Celik, A research on the radiation shielding effects of clay, silica fume and cement samples, Radiat. Phys. Chem. 117 (2015) 88-92, https://doi.org/10.1016/j.radphyschem.2015.08.003.
  22. F.H. Sallem, M.I. Sayyed, D.A. Aloraini, A.H. Almuqrin, K.A. Mahmoud, Characterization and gamma-ray shielding performance of calcinated and ball-milled calcinated bentonite clay nanoparticles, Crystals 12 (2022), https://doi.org/10.3390/cryst12081178.
  23. K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, I.E. El Aassy, Aggregates grain size and press rate dependence of the shielding parameters for some concretes, Prog. Nucl. Energy 118 (2020), https://doi.org/10.1016/j.pnucene.2019.103092.
  24. M.I. Sayyed, Effect of WO3 on the attenuation parameters of TeO2-La2O3-WO3 glasses for radiation shielding application, Radiat. Phys. Chem. 215 (2023), 111319, https://doi.org/10.1016/j.radphyschem.2023.111319.
  25. M.I. Sayyed, K.M. Kaky, E. S, akar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses, J. Non-Cryst. Solids 512 (2019) 33-40, https://doi.org/10.1016/j.jnoncrysol.2019.02.014.
  26. M.I. Abualsayed, Radiation attenuation attributes for BaO-TiO 2 -SiO 2 -GeO 2 glass series: a comprehensive study using Phy-X software, Radiochim. Acta 111 (2023) 211-216, https://doi.org/10.1515/ract-2022-0095.
  27. O.L. Tashlykov, S.G. Vlasova, I.S. Kovyazina, K.A. Mahmoud, Repercussions of yttrium oxides on radiation shielding capacity of sodium-silicate glass system: experimental and Monte Carlo simulation study, Eur Phys J Plus 136 (2021), https://doi.org/10.1140/epjp/s13360-021-01420-0.
  28. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, M.A. Imheidat, F. Alshahri, M. Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021), https://doi.org/10.1016/j.ijleo.2021.166790.
  29. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, Eur. Phys. J. Plus 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6.
  30. H. Share Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Permeability and gamma-ray shielding efficiency of clay modified by barite powder, Geotech. Geol. Eng. 37 (2019) 845-855, https://doi.org/10.1007/s10706-018-0654-0.
  31. H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598, https://doi.org/10.1007/s10064-018-1391-6.
  32. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding, Int. J. Adv. Nuclear Reactor Design Technol. 3 (2021) 194-199, https://doi.org/10.1016/j.jandt.2021.09.007.
  33. B. Dogan, N. Altinsoy, Investigation of Photon Attenuation Coefficient of Some Building Materials Used in Turkey, 2015, 020033, https://doi.org/10.1063/1.4914224.