• Title/Summary/Keyword: Radiation Protection Material

Search Result 188, Processing Time 0.027 seconds

A Study on the Detection Ability of Minute Lesions in X-ray Using the Molybdenum Target (Molybdenum 저지극을 이용한 X-ray의 미세병소 검출능력에 관한 연구)

  • Yang, Da-Rae;Dong, Kyung-Rae;Park, Yong-Soon;Ji, Youn-Sang;Kim, Young-Keun;Kim, Chang-Bok
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Beam quality is determined according to Xray tube's target material. In a range of between 22 kVp and 28 kVp, molybdenum target generates the characteristics energy between the average 17.9 kVp and 19.5 kVp, which produces the high contrast image of the breast. In this study, we used the Mo/Mo combination breast device and ALVIM TRM phantom and measured the detection ability of the minute lesion in the breast imaging throughout analyzing ROC curves. Assuming that an average subject thickness of the breast is 40 mm, the detection ability was not dependent on the kVp changes in a while dependent on both the mAs and thickness change. We can assure that it is not needed to increase the kVp for the imaging of breast which thickness is within the mean range of 40 mm.

Evaluation of Neutron Detection Efficiency of the Unified Non-Destructive Assay Using MCNPX Code (MCNPX 코드를 이용한 통합비파괴측정장치의 중성자 검출 효율 평가)

  • Won, Byung-Hee;Seo, Hee;Lee, Seung Kyu;Park, Se Hwan;Kim, Ho Dong
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.172-178
    • /
    • 2013
  • In this study, neutron detection efficiency of the UNDA system, which has been developed for study on nuclear material accountancy in a future pyro-process facility, was evaluated by using the MCNPX code. The detection efficiency was evaluated as a function of (1) positions of $^{252}Cf$ neutron source in the axial and radial directions, and (2) thicknesses and locations of the container filled with the depleted uranium materials for two different designs of the UNDA. In the case of $^{252}Cf$ source positions, detection efficiency was distributed from 6.83% to 13.35%. As $^{252}Cf$ source was positioned at upper part in the axial direction, detection efficiency was decreased after a slight increase. On the other hands, as $^{252}Cf$ source was positioned at outer part in the radial direction, detection efficiency was increased. In the case of container thickness, there was a slight decline when the thickness was increased. As the container was located at upper part, detection efficiency was decreased and as the container was located at outer part, detection efficiency was increased. Detection efficiency was varied from 10.31% to 13.61%. These values were higher than that of $^{252}Cf$ source case. The UNDA with polyethylene cover has about 2% higher detection efficiency than the UNDA without the cover.

Estimation of In-plant Source Term Release Behaviors from Fukushima Daiichi Reactor Cores by Forward Method and Comparison with Reverse Method

  • Kim, Tae-Woon;Rhee, Bo-Wook;Song, Jin-Ho;Kim, Sung-Il;Ha, Kwang-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.114-129
    • /
    • 2017
  • Background: The purpose of this paper is to confirm the event timings and the magnitude of fission product aerosol release from the Fukushima accident. Over a few hundreds of technical papers have been published on the environmental impact of Fukushima Daiichi accident since the accident occurred on March 11, 2011. However, most of the research used reverse or inverse method based on the monitoring of activities in the remote places and only few papers attempted to estimate the release of fission products from individual reactor core or from individual spent fuel pool. Severe accident analysis code can be used to estimate the radioactive release from which reactor core and from which radionuclide the peaks in monitoring points can be generated. Materials and Methods: The basic material used for this study are the initial core inventory obtained from the report JAEA-Data/Code 2012-018 and the given accident scenarios provided by Japanese Government or Tokyo Electric Power Company (TEPCO) in official reports. In this research a forward method using severe accident progression code is used as it might be useful for justifying the results of reverse or inverse method or vice versa. Results and Discussion: The release timing and amounts to the environment are estimated for volatile radioactive fission products such as noble gases, cesium, iodine, and tellurium up to 184 hours (about 7.7 days) after earthquake occurs. The in-plant fission product behaviors and release characteristics to environment are estimated using the severe accident progression analysis code, MELCOR, for Fukushima Daiichi accident. These results are compared with other research results which are summarized in UNSCEAR 2013 Report and other technical papers. Also it may provide the physically based arguments for justifying or suspecting the rationale for the scenarios provided in open literature. Conclusion: The estimated results by MELCOR code simulation of this study indicate that the release amount of volatile fission products to environment from Units 1, 2, and 3 cores is well within the range estimated by the reverse or inverse method, which are summarized in UNSCEAR 2013 report. But this does not necessarily mean that these two approaches are consistent.

Combining of GIS and the Food Chain Assessment Result around Yeonggwang Nuclear Power Plant (영광 원전 주변 육상생태계 평가 결과와 GIS의 연계)

  • Kang, H.S.;Jun, I.;Keum, D.K.;Choi, Y.H.;Lee, H.S.;Lee, C.W.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.237-245
    • /
    • 2005
  • The distribution of radionuclides in soil and plants were calculated, assuming an accidental release of radionuclides from Yeonggwang Nuclear Power Plant. The results which show the concentration change with time and regions were displayed by GIS. GIS Included the commercial program, ArcView(ESRI), and a basic digital map of 1:5000 scale for 30km by 30km area around Yeonggwang Nuclear Power Plant. The target material was $^{137}Cs$ in soil around Yeonggwang area. Given denosited $^{137}Cs$ concentrations, ECOREA-II code computed the $^{137}Cs$ concentration of the soil and the plant in the area divided by 16 azimuth, 480 unit cells in total in which the concentrations also varied with time. The results were introduced into the attributed data of previously designed polygon cells in ArcView. In order to display the concentration change with time by monotonic color, the RGB value for ArcView color lamp was controlled. This display is useful for the public to understand the concentration change of radionuclide around Yeonggwang area definitely.

A Comparative Study on Radiochemical Pre-treatment Methods for Airborne Uranium-Isotropic Analysis (공기 중 우라늄 동위원소 분석을 위한 방사화학 전처리방법에 대한 비교 분석 연구)

  • Kang, Han-Byeol;Chung, Heejun;Park, Seunghoon;Shin, Jung-Ki;Kwak, Sung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.101-109
    • /
    • 2015
  • Alpha spectrometry is typically used for the assessment of uranium particle concentrations and its accuracy can be directly related to the accuracy in which the radiochemical pre-treatment is conducted. Ashing and alkali fusion methods are typically used but the ashing method requires longer analysis time and the alkali fusion method is extremely costly. Therefore, a new pre-treatment method using ultrasonic cleaning was developed and its experimental result was compared against the two conventional methods in terms of pre-treatment time, convenience, cost, and recovery rate of a target material. The results that were obtained by the conventional methods(ashing and alkali fusion) and the new method were compared. Consequently, even though the shorter pre-treatment time was required, the new technique showed almost same recovery rate comparing with two conventional methods. The new method was also featured by its relatively lower cost and a simpler process than two conventional methods.

TET2MCNP: A Conversion Program to Implement Tetrahedral-mesh Models in MCNP

  • Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Lee, Hyun Su;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • Background: Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. Materials and Methods: TET2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. Results and Discussion: To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. Conclusion: In the present study, we have developed a computer program, TET2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

Atmospheric Dispersion Characteristics of Radioactive Materials according to the Local Weather and Emission Conditions

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Background: This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Materials and Methods: Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the $^{137}Cs$, using the WRF/HYSPLIT modeling system. Results and Discussion: The highest mean concentration of $^{137}Cs$ occurred at 0900 LST under the ME4_1 (main wind direction: SSW, daily average wind speed: $2.8ms^{-1}$), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, $4.1ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4_4 (S, $2.7ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 0300 LST because $^{137}Cs$ stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1_3 and EM2_3 that had the maximum total number of particles showed the widest dispersion of $^{137}Cs$, while its highest mean concentration was estimated under the EM1_1 considering the relatively narrow dispersion and high emission rate. Conclusion: This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of $^{137}Cs$ concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where $^{137}Cs$ is dispersed, the emission rate of $^{137}Cs$, and the number of emitted particles.

The Transport Characteristics of 238U, 232Th, 226Ra, and 40K in the Production Cycle of Phosphate Rock

  • Jung, Yoonhee;Lim, Jong-Myoung;Ji, Young-Yong;Chung, Kun Ho;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • Background: Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., $^{238}U$ and $^{226}Ra$), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$ levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Materials and Methods: Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. Results and Discussion: The concentration ratios of $^{226}Ra$ and $^{238}U$ in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was $^{40}K$, and the median $^{40}K$ activity was $8.972Bq{\cdot}g^{-1}$ and $1.496Bq{\cdot}g^{-1}$, respectively. For the $^{238}U$ series, the activity of $^{238}U$ and $^{226}Ra$ was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Conclusion: Although the activity of $^{40}K$ in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of $^{226}Ra$ and $^{238}U$ in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing.

Assessment of Environmental Radioactivity Surveillance Results around Korean Nuclear Power Utilization Facilities in 2017

  • Kim, Cheol-Su;Lee, Sang-Kuk;Lee, Dong-Myung;Choi, Seok-Won
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.118-126
    • /
    • 2019
  • Background: Government conducts environmental radioactivity surveillance for verification purpose around nuclear facilities based on the Nuclear Safety Law and issues a surveillance report every year. This study aims to evaluate the short and the long-term fluctuation of radionuclides detected above MDC and their origins using concentration ratios between these radionuclides. Materials and Methods: Sample media for verification surveillance are air, rainwater, groundwater, soil, and milk for terrestrial samples, and seawater, marine sediment, fish, and seaweed for marine samples. Gamma-emitting radionuclides including $^{137}Cs$, $^{90}Sr$, Pu, $^3H$, and $^{14}C$ are evaluated in these samples. Results and Discussion: According to the result of the environmental radioactivity verification surveillance in the vicinity of nuclear power facilities in 2017, the anthropogenic radionuclides were not detected in most of the environmental samples except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples. Radioactivity concentration ratios between the anthropogenic radionuclides ($^{137}Cs/^{90}Sr$, $^{137}Cs/^{239+240}Pu$, $^{90}Sr/^{239+240}Pu$) were similar to those reported in the environmental samples, which were affected by the global fallout of the past nuclear weapon test, and Pu atomic ratios ($^{240}Pu/^{239}Pu$) in the terrestrial sample and marine sample showed significant differences due to the different input pathway and the Pu source. Radioactive iodine ($^{131}I$) was detected at the range of < $5.6-190mBq{\cdot}kg-fresh^{-1}$ in the gulfweed and sea trumpet collected from the area of Kori and Wolsong intake and discharge. A high level of $^3H$ was observed in the air (Sangbong: $0.688{\pm}0.841Bq{\cdot}m^{-3}$) and the precipitation (Meteorology Post: $199{\pm}126Bq{\cdot}L^{-1}$) samples of the Wolsong nuclear power plant (NPP). $^3H$ concentration in the precipitation and pine needle samples showed typical variation pattern with the distance and the wind direction from the stack due to the gaseous release of $^3H$ in Wolsong NPP. Conclusion: Except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples, anthropogenic radionuclides were below MDC in most of the environmental samples. Overall, no unusual radionuclides and abnormal concentration were detected in the 2017's surveillance result for verification. This research will be available in the assessment of environment around nuclear facilities in the event of radioactive material release.

The influence of Ni ion addition on the microstructure and gamma ray shielding ability of ferromagnetic CuFe2O4 ceramic material

  • Mohammad W. Marashdeh;Fawzy H. Sallam;Ahmed M. Abd El-Aziz;Mohamed I. Elkhatib;Sitah f. Alanazi;Mamduh J. Aljaafreh;Mohannad Al-Hmoud;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2740-2747
    • /
    • 2024
  • The sintering process acquired ferromagnetic copper ferrite ceramic material with a small concentration of Ni ion at 1100 ℃ for 1 h. Previously, copper ferrite with Ni proportions powder was acquired by the wet chemical process according to the relation CuFe2-xNixO4 where x takes values 0.0, 0.015, 0.03, 0.04, and 0.05. The role of Ni ion in the copper ferrite structure was investigated by X-ray analysis, Scanning electron microscope, EDX analysis, and density measurements. The gamma-ray shielding properties for the fabricated CuFeNiO ceramics samples were evaluated using the Monte Carlo simulation method. The obtained results show an enhancement in the linear attenuation coefficient for the fabricated ceramics with increasing the insertions of Ni ions within the fabricated samples, where increasing the Ni ions concentration between 0 and 1.19 wt% increases the linear attenuation by between 1.581 and 1.771 cm-1 (at 0.103 MeV), 0.304-0.338 cm-1 (at 0.662 MeV), and 0.160-0.178 cm-1 (at 2.506 MeV), respectively. Simultaneously, the radiation protection efficiency for a 1 cm thickness of the fabricated samples increased between 14.8 and 16.3% with increasing the Ni ions between 0 and 1.19 wt%. Although the Ni doping concentration does not exceed 1.5 wt% of the total composition of the fabricated ceramics, the shielding capacity of the fabricated ceramics was enhanced by more than 11%, along the studied energy interval. Therefore, the fabricated samples can be used in gamma-ray shielding applications.