• Title/Summary/Keyword: Radiation Pipe

Search Result 76, Processing Time 0.025 seconds

A Study for Flaw Detection of 3/4″ Pipe by Using Guided Wave (유도초음파를 이용한 3/4″ 배관 결함 검출 연구)

  • Chung, Woo Geun;Kim, Jin-Hoi;Cheon, Keun Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • Unlike the welded pipes in the primary system of light water nuclear power plants being periodically inspected with in-Service inspection program, relatively small pipes with the outer diameter less than 2 inch have not been regularly inspected to date. However, after several failure reports on the occurrence of critical crack-like defects in small pipes, inspection for the small pipes has been more demanded because it could cause the provisional outage of nuclear power plants. Nevertheless, there's no particular method to examine the small pipes having access limitations for inspection due to various reasons; inaccessible area, excessive radiation exposure, hazardous surrounding, and etc. This study is to develop a reliable inspection technique using torsional and flexural modes of guided wave to detect defects that could occur in inaccessible area. The attribute of guided wave that can travel a long distance enables to inspect even isolated range of the pipe from accessible location. This paper presents a case study of the evaluation test on 3/4" small-bore pipes with guide wave method. The test result demonstrates the crack signal behavior and assures possibility to detect the crack signal in a flexural mode, which is clearly distinguishable from the symmetric structure signal in a torsional mode.

A Study for Comparison of Consequence Analysis for Buried Pipeline Considering the Depth Factor (깊이 인자를 고려한 매설배관의 사고피해영향 비교 분석에 관한 연구)

  • Han, Seung-Hoon;Seol, Ji-Woo;Yoo, Byong-Tae;Tae, Chan-Ho;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.9-16
    • /
    • 2016
  • Buried pipe system is subject to leak or rupture due to internal and external defects with age. Especially, if the pipeline is designed for pressurized gas, the leak can wreak a devastating on its surrounding area. The current method of setting up underground gas pipeline is based on OGP criteria of applying one tenth of the inner pipe pressure. The criteria is applied irrespective of their burial depth or pipe's properties. At times, even the whole safety measures are totally ignored. Considering the magnitude of possible damage from a gas leakage, a precise analytical tool for the risk assessment is urgently needed. The study was conducted to assess possible scenarios of gas accidents and to develop a computer model to minimize the damage. The data from ETA was analyzed intensively, and the model was developed. The model is capable of predicting jet fire influence area with comprehensive input parameters, such as burial depth. The model was calibrated and verified by the historic accident data from Edison Township, New Jersey, the United States. The statistical model was also developed to compare the results of the model in this study and the existing OGP model. They were in good agreement with respect to damage predictions, such as radiation heat coming from 10 meters away from the heat source of gas flame.

A Case of Non-cardiogenic Pulmonary Edema caused by Nitrogen Dioxide Poisoning after Cutting Copper Pipe with an Oxyethylene Torch (산소 에틸렌 토치로 동파이프 절단작업 후 발생한 이산화질소 중독에 의한 비심인성 폐부종 1례)

  • JeGal, Yang-Jin;Ahn, Jong-Joon;Seo, Kwang-Won;Cha, Hee-Jeong;Kwon, Woon-Jung;Kim, Yang-Ho
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.2
    • /
    • pp.175-179
    • /
    • 2006
  • Welders are exposed to a number of hazards including metal fumes, toxic gases, electricity, heat, noise, and radiation such as ultraviolet and infrared light. We encountered a patient who developed non-cardiogenic pulmonary edema within a day after cutting copper pipe with an oxyethylene torch. The patient was a 26-year-old welder. He complained of dyspnea, generalized myalgia, and febrile sensation the following morning. The patient's chest X-ray and chest CT scan showed extensively distributed and ill-defined centrilobular nodules. Both his symptoms and chest X-ray abnormalities improved spontaneously. We attributed the patient's symptoms to non-cardiogenic pulmonary edema due to nitrogen dioxide, reasoning that: 1) the pipe consisted only of copper, according to material safety data sheet (MSDS); 2) a previous report in the literature demonstrated increased nitrogen dioxide levels under similar conditions; 3) the patient's clinical course and radiologic findings were very reminiscent of non-cardiogenic pulmonary edema following accidental exposure to nitrogen dioxide.

  • PDF

Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process (LNG 재기화 공정에서 LNG 누출에 따른 화재 및 폭발사고의 피해영향 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.825-833
    • /
    • 2018
  • In this study, one calculated the range of damage to the combustion characteristics according to the composition of LNG and the size of leaking holes, and analyzed the damage effect in case of leakage accidents caused by pipe damage in the re-gasification process for the LNG supply system. In order to confirm the combustion characteristics according to LNG composition, there was no significant difference in the result of risk analysis by LNG-producing areas. However, the higher the methane content of the components, the lower the risk of flash fire, hazardous areas of overpressure due to explosion, and thermal radiation damage caused by jet fire. In addition, one investigated the effect of leakage, holes, and ruptures on the risk range and explosions according to the size of the pipe-leakage hole. Also, the influence of overpressure and the range of damage from radiant heat could be predicted. One confirmed the effect of LNG composition and pipe-leakage size on fire and explosion.

Thermal field of large-diameter concrete filled steel tubular members under solar radiation

  • Yang, Daigeng;Chen, Guorong;Ding, Xiaofei;Xu, Juncai
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2020
  • Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22℃, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.

Heat Radiation of LED Light using eu Plating Engineering Plastic Heat Sink (동도금 EP방열판에 의한 소형LED조명등 방열)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, the electronic parts are to be thinner plate, smaller size, light weight material and CPU, HDD and DRAM in all the parts have been produced on the basis of the high speed and greater capacity. Also, conventional goods have replaced a LED (Light-Emitting Diode) in lighting products so; such industry devices need to have cooling. To maximize all the performance on the heat-radiated products, the area of heat-radiated parts is required to be cooled for keeping the life time extension and performance of product up. Existing cooling systems are using radiant heat plate of aluminum, brass by extrusion molding, heat pipe or hydro-cooling system for cooling. There is a limitation for bringing the light weight of product, cost reduction, molding of the cooling system. So it is proposed that an alternative way was made for bringing to the cooling system. EP (Engineering Plastic) of low-cost ABS (Acrylonitrile butadiene styrene Resin) and PC (Polycarbonate) was coated with brass and the coating made the radiated heat go up. The performance of radiant heat plate is the similar to the existing part. We have studied experimentally on the radiated heat plate for the light-weight, molding improvement and low-cost. From now on, we are going to develop the way to replace the exiting plate with exterior surface of product as a cooling system.

In-Service Identification of the Heterogeneous Zone in Petrochemical Pipelines by Using Sealed Gamma-Ray Sources $(^{60}Co,\;^{137}Cs)$

  • Kim, Jin-Seop;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.169-173
    • /
    • 2006
  • In-service diagnoses of pipeline facilities are important for a systematic maintenance of them. Field applications by using sealed gamma-ray sources $(^{60}Co,\;^{137}Cs)$ were performed to identify the heterogeneous zone in the pipelines of a distillation tower and a flare stack respectively. From the results, the heterogeneous zones in the pipelines were successfully identified. In the case of the pipeline connected to the distillation tower, a vapor pocket was detected in the fluid under hydrodynamic conditions, which could explain the reason for a decrease of the flow rate. In another case, an area with some amount of catalyst deposits was found at the bottom of the gas pipeline which was connected to the flare stack. And these findings provided important information for the process operators. Diagnosis technique by using gamma radiation sources has been proven to be an effective and reliable method for providing information on a media distribution in a facility.

Thermal Flow Analysis and Design of KSTAR Thermal Shield Panel by Numerical Method (수치해석을 통한 KSTAR 주장치 열차폐 패널 열.유동 특성해석)

  • 김동락;김광선;노영미;조승연;김승현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.73-77
    • /
    • 2002
  • In order to derive the detailed design of Thermal Shield Cryopanel. which plays a role to make the Tokamak Nuclear Fusion Equipment work at both static and efficient conditions the commercially available software package FLUENT Version 5.3, was utilized. This study investigated the effects of thermal sources and distributions on the temperatures of Lid. Body. Base. and EH-Port Cryopanel by the numerical technique whose grid generations cover the solid and 9as region of the panel. The physical model of the Thermal Shield Cryopanel is that the 10mm diameter of the pipe with 1mm thickness is soldered on the Stainless steel Panel with 4mm thickness. The heat fluxes to the panel are assumed to be by thermal radiation in the vacuum space and by conduction through the supporters. The inlet conditions of Helium gas are 20 atmospheric Pressures and 60K temperature. The panel shapes with cooling Pipes and the operational conditions to keep appropriate temperature distribution of Thermal Shield Cryopanel Have been found and suggested.

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

Study on the Development of LED Headlamps for Used Cars

  • Jung, Eui-Dae;Lee, Young-Lim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.270-274
    • /
    • 2014
  • Currently, LED headlamps are only attached to newly manufactured vehicles, and it remains difficult to mount LED headlamps on used cars. Therefore LED headlamps need to be developed for used cars as a replacement of their halogen lamps. Due to a number of spatial limitations, it is critical to ensure a certain level of thermal performance. In order to obtain a design for efficient heat radiation, this paper aimed to optimize thermal management through a combination of heat sinks, heat pipes and fans. Based on such a design, this paper succeeded in developing LED headlamps of the desired performance to replace the halogen bulbs of used cars.