• Title/Summary/Keyword: Radiation Over-exposure

Search Result 161, Processing Time 0.023 seconds

Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation (전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용)

  • Park, Seung-Jin;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Nah, Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.233-241
    • /
    • 1994
  • Purpose : This study was performed to verify dose distribution with the tissue compensator which is used for uniform dose distribution in total body irradiation(TBI). Materials and methods : The compensators were made of lead(0.8mm thickness) and aluminum(1mm or 5mm thickness) plates. The humanoid phantom of adult size was made of paraffin as a real treatment position for bilateral total body technique. The humanoid phantom was set at 360cm of source-axis distance(SAD) and irradiated with geographical field size(FS) $144{\times}144cm^2(40{\times}40cm^2$ at SAD 100cm) which covered the entire phantom. Irradiation was done with 10MV X-ray(CLINAC 1800, Varian Co., USA) of linear accelerator set at Department of Therapeutic Radiology, Chonnam University Hospital. The midline absorbed dose was checked at the various regions such as head, mouth, mid-neck, sternal notch, mid-mediastinum, xiphoid, umbilicus, pelvis, knee and ankle with or without compensator, respectively. We used exposure/exposure rate meter(model 192, Capintec Inc., USA) with ionization chamber(PR 05) for dosimetry, For the dosimetry of thorax region TLD rods of $1x1x6mm^3$ in volume(LiF, Harshaw Co., Netherland) was used at the commercially available humanoid phantom. Results : The absorbed dose of each point without tissue compensator revealed significant difference(from $-11.8\%\;to\;21.1\%$) compared with the umbilicus dose which is a dose prescription point in TBI. The absorbed dose without compensator at sternal notch including shoulder was $11.8\%$ less than the dose of umbilicus. With lead compensator the absorbed doses ranged from $+1.3\%\;to\;-5.3\%$ except mid-neck which revealed over-compensation($-7.9\%$). In case of aluminum compensator the absorbed doses were measured with less difference(from $-2.6{\%}\;to\;5.3\%$) compared with umbilicus dose. Conclusion : Both of lead and aluminum compensators applied to the skull or lower leg revealed a good compensation effect. It was recognized that boost irradiation or choosing reference point of dose prescription at sternal notch according to the lateral thickness of patient in TBI should be considered.

  • PDF

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

In the Treatment I-131, the Significance of the Research that the Patient's Discharge Dose and Treatment Ward can Affect a Patient's Kidney Function on the Significance of Various Factors (I-131 치료시 환자의 신장기능과 다양한 요인으로 의한 퇴원선량 및 치료병실 오염도의 유의성에 관한 연구)

  • Im, Kwang Seok;Choi, Hak Gi;Lee, Gi Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2013
  • Purpose: I-131 is a radioisotope widely used for thyroid gland treatments. The physical half life is 8.01 and characterized by emitting beta and gamma rays which is used in clinical practice for the purpose of acquiring treatment and images. In order to reduce the recurrence rate after surgery in high-risk thyroid cancer patients, the remaining thyroid tissue is either removed or the I-131 is used for treatment during relapse. In cases of using a high dosage of radioactive iodine requiring hospitalization, the patient is administered dosage in the hospital isolation ward over a certain period of time preventing I-131 exposure to others. By checking the radiation amount emitted from patients before discharge, the patients are discharged after checking whether they meet the legal standards (50 uSv/h). After patients are discharged from the hospital, the contamination level is checked in many parts of the ward before the next patients are hospitalized and when necessary, decontamination operations are performed. It is expected that there is exposure to radiation when measuring the ward contamination level and dose check emitted from patients at the time of discharge whereby the radiation exposure by health workers that come from the patients in this process is the main factor. This study analyzed the correlation between discharge dose of patients and ward contamination level through a variety of factors such as renal functions, gender, age, dosage, etc.). Materials and Method: The study was conducted on 151 patients who received high-dosage radioactive iodine treatment at Soon Chun Hyang University Hospital during the period between 8/1/2011~5/31/2012 (Male: Female: 31:120, $47.5{\pm}11.9$, average dosage of $138{\pm}22.4$ mCi). As various factors expected to influence the patient discharge dose & ward contamination such as the beds, floors, bathroom floors, and washbasins, the patient renal function (GFR), age, gender, dosage, and the correlation between the expected Tg & Tg-Tb expected to reflect the remaining tissue in patients were analyzed. Results: In terms of the discharge dose and GFR, a low correlation was shown in the patient discharge dose as the GFR was higher (p < 0.0001). When comparing the group with a dosage of over 150mCi and the group with a lower dosage, the lower dosage group showed a significantly lower discharge dose ($24{\pm}10.4uSv/h$ vs $28.7{\pm}11.8uSv/h$, p<0.05). Age, gender, Tg, Tg-Tb did not show a significant relationship with discharge dose (p> 0.05). The contamination level in each spot of the treatment ward showed no significant relationship with GFR, Tg, Tg-Tb, age, gender, and dosage (p>0.05 ). Conclusion: This study says that discharge of the dose in the patient's body is low in GFR higher and Dosage 150mCi under lower. There was no case of contamination of the treatment ward, depending on the dose and renal association. This suggests that patients' lifestyles or be affected by a variety of other factors.

  • PDF

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror (Graded 다층박막거울을 이용한 단색 엑스선 획득)

  • Ryu, Cheolwoo;Choi, Byoungjung;Son, Hyunhwa;Kwon, Youngman;Kim, Byoungwook;Kim, Youngju;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.

Comparative study of 82Sr separation/purification methods used at Brookhaven National Laboratory and ARRONAX

  • Ha, Yeong Su;Yoon, Sang-Pil;Kim, Han-Sung;Kim, Kye-Ryung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • Nuclear imaging is one of the most powerful measures for non-invasive diagnosis of myocardial vascular disease. Radionuclide such as 13N, 15O, 201Tl and 82Rb is used for the measurement of cardiac blood flow. 13N, 15O and 201Tl are produced in cyclotrons while 82Rb is obtained from generator. Rubidium (Rb), an alkali ion, behaves biologically like potassium, and accumulates in myocardial tissue. Rb has rapid blood clearance profile which allows the use of 82Rb with a short physical half-life of 75 s for non-invasive evaluation of regional myocardial perfusion. There are several advantages of 82Rb over other radioisotopes. An ultra-short half-life significantly reduces the exposure of patients to radiation and allows to repeat injections for studying the effects of medical intervention. As a positron emitter, 82Rb allows positron emission tomography (PET) imaging which have shown superior diagnostic performances. 82Rb can be produced from generator by decay of its parent 82Sr. However, the preparation of 82Sr is difficult, because appropriate purity is required to meet the specification of the product. Recently reported procedure from ARRONAX research institute showed that a Chelex-100 resin is sufficient for this purpose and additional column is not necessary. Whereas Brookhaven National Laboratory (BNL) procedure contains three ion exchange resin separation, including Chelex-100 resin. Currently, since 82Sr production site is non-existent in Korea, Korea Atomic Energy Research Institute (KAERI) has plan to produce 82Sr within specifications. We compared 82Sr purification procedures reported from ARRONAX and BNL to investigate the most suitable procedure for our conditions.

Analysis of CT, MRI, DITI for the Diagnosis of Abdominal Obesity and Clinical Usefulness (복부 비만 진단을 위한 CT, MRI, DITI 분석 및 임상적 유용성)

  • Yeo, Jin-Dong;Jeon, Byeong-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.252-259
    • /
    • 2011
  • This study was to find out the correlation between abdominal surface temperature and abdominal fat areas. CT and MRI methods have been used to assess abdominal fat area. Abdominal surface temperature according to abdominal fat area was also measured by DITI. 20 college students were selected as the subjects for the study. The results, showed that there were statistically different significance in abdominal fats measured by CT and MRI according to weight groups. Abdominal surface temperature gap were measured by DITI and there was a statistically significant difference in only T12 region. temperature gaps between weight groups were over $0.7^{\circ}C$. In conclusion, CT method is the most accurate method to measure abdominal fat. However, weak points are radiation exposure and high cost for study. The correlation between abdominal surface temperature and abdominal fat areas were strong. Therefore, DITI may be considered as useful convenient method to evaluate the abdominal obesity and clinical usefulness.

Microsurgical Reconstruction of Severe Radionecrotic Wounds Following Mastectomy (흉부의 심한 방사선 괴사 환부에 대한 미세 수술적 재건)

  • Ahn, Hee-Chang
    • Archives of Reconstructive Microsurgery
    • /
    • v.7 no.2
    • /
    • pp.114-121
    • /
    • 1998
  • The purpose of this study is to investigate the appropriate management of severe radionecrotic wounds of the anterior chest wall associated with infection of the soft tissues and ribs and exposure of vital structures(heart and lung), and present our strategies for reconstruction of these complicated patients. 9 patients have undergone radical debridement and immediate microsurgical reconstruction for severe radionecrotic wounds of the anterior chest wall over last 7 years. All patients had extensive osteomyelitis of the ribs or sternum, and chronic infection or cutaneous fistulae. 2 patients had pericardial effusions due to longstanding inflammation, and 6 patients had pleural effusions. 2 patients had ipsilateral lung collapse. 10 free flaps were performed for coverage of the huge defects. One patient required 2 free flaps to control the inflammation. 8 free TRAM flaps were used for coverage of the defects and in addition, the rectus abdominis muscle was packed into any deep cavity. 1 patients underwent latissimus dorsi muscle free flap because of previous abdominal surgery. After extensive debridement of the infected, radionecrotic wounds, all 10 free flaps were successful. All the extensive radionecrotic defects of the anterior chest wall were completely healed. Free flaps successfully covered the exposed vital structures of the heart and lungs. Patients with severe radionecrotic defects of the anterior chest wall after ablative breast cancer surgery and radiotherapy were successfully treated by radical debridement and immediate free flap surgery. The TRAM flap together with the rectus muscle is the treatment of choice for these huge defects. The latissimus dorsi muscle flap was the second choice in patients with previous abdominal surgery. The recipient vessel should be carefully selected because of possible radiation damage and inflammation.

  • PDF

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

Consecutive automated production of carbon-11 labeled radiopharmaceuticals by sharing 11C-methylation reagent from one 11C-synthetic module

  • Park, Hyun Sik;Lee, Hong Jin;An, Hyun Ho;Moon, Byung Seok;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Increasing clinical demand for carbon-11 labeled radiopharmaceuticals has triggered technological advances in fields of radiochemistry and automated modules. Even though carbon-11 has a short half-life ($t_{1/2}=20.4min$), the consecutive second production of carbon-11 labeled radiopharmaceutical in one $^{11}C$-synthetic module should be delayed at least over 4 h to avoid the high radiation exposure. We herein aimed to produce two different carbon-11 labeled radiopharmaceuticals ([$^{11}C$]PIB and [$^{11}C$]methionine) by sharing of [$^{11}C$]methylation source in one $^{11}C$-synthetic module. The synthesis of $^{11}C$-labeling reagents ($[^{11}C]CH_3I$ or $[^{11}C]CH_3OTf$) is fully automated using the commercial TRACERlab $FX_{C-pro}$ module and is readily adaptable to $^{11}C$-labeling reactor for [$^{11}C$]PIB as well as another $^{11}C$-labeling apparatus for [$^{11}C$]methionine via the three-way valve. After completing the [$^{11}C$]PIB production, the re-synthesized $[^{11}C]CH_3I$ was passed through the three-way valve connected the polyetheretherketone (PEEK) line and loaded into the C18 Sep-Pak cartridge including the methionine precursor. The labeled product [^${11}C$]methionine was purified by a simple cartridge separation and reformulated into saline. The radiochemical yield of [$^{11}C$]PIB and [$^{11}C$]methionine were $5.3{\pm}0.6%$ and $18.7{\pm}0.8%$ (n.d.c.), respectively, with over 97% of radiochemical purity. The specific activity of [$^{11}C$]PIB was over $110GBq/{\mu}mol$. Total production time of two radiopharmaceuticals needs about 2 h from $1^{st}$ beam irradiation including quality control tests. Final [$^{11}C$]PIB and [$^{11}C$]methionine were satisfied all quality control test standards.

Optimization of the Empirical Method to the Enhancement Image of the Four Chambers at the Same Time in the Pediatric Cardiac Computed Tomography (소아 심장 전산화단층촬영 검사에서 4 chamber의 동시 조영증강 영상에 대한 최적화 방안)

  • Park, Chanhyuk;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.279-285
    • /
    • 2014
  • This study is to have dose reduction and minimization of excessive use of contrast medium in the pediatric cardiac computed tomography and to suggest the optimization plan to acquire the enhancement image of the 4 chambers at the same time by formulating scan delay time in empirical method with considering variables such as contrast medium injection velocity and cardiac approaching time. Quantitative, qualitative and dose assessment were carried out for 30 pediatric patients who had taken the cardiac examination. In conclusion, image enhancement in 4 chambers of the cardiac shows over 300 HU which is proper to pediatric cardiac reading by applying the empirical method with calculating scan delay time according to weight and contrast medium volume and injection velocity. Qualitative image assessments in confidence sharpness and noise have excellence qualitatively. Exposure dose to pediatrics also decreases precisely. Therefore this study is judged to take a important role of making optimization images with advantages of dose reduction and less side effects caused by it's excessive use in clinic.