DOI QR코드

DOI QR Code

Comparative study of 82Sr separation/purification methods used at Brookhaven National Laboratory and ARRONAX

  • Ha, Yeong Su (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Yoon, Sang-Pil (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Han-Sung (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Kye-Ryung (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI))
  • Received : 2019.12.12
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Nuclear imaging is one of the most powerful measures for non-invasive diagnosis of myocardial vascular disease. Radionuclide such as 13N, 15O, 201Tl and 82Rb is used for the measurement of cardiac blood flow. 13N, 15O and 201Tl are produced in cyclotrons while 82Rb is obtained from generator. Rubidium (Rb), an alkali ion, behaves biologically like potassium, and accumulates in myocardial tissue. Rb has rapid blood clearance profile which allows the use of 82Rb with a short physical half-life of 75 s for non-invasive evaluation of regional myocardial perfusion. There are several advantages of 82Rb over other radioisotopes. An ultra-short half-life significantly reduces the exposure of patients to radiation and allows to repeat injections for studying the effects of medical intervention. As a positron emitter, 82Rb allows positron emission tomography (PET) imaging which have shown superior diagnostic performances. 82Rb can be produced from generator by decay of its parent 82Sr. However, the preparation of 82Sr is difficult, because appropriate purity is required to meet the specification of the product. Recently reported procedure from ARRONAX research institute showed that a Chelex-100 resin is sufficient for this purpose and additional column is not necessary. Whereas Brookhaven National Laboratory (BNL) procedure contains three ion exchange resin separation, including Chelex-100 resin. Currently, since 82Sr production site is non-existent in Korea, Korea Atomic Energy Research Institute (KAERI) has plan to produce 82Sr within specifications. We compared 82Sr purification procedures reported from ARRONAX and BNL to investigate the most suitable procedure for our conditions.

Keywords

References

  1. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, Squicciarini S, al-Aouar ZR, Schork A, Kuhl DE. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303-1310. https://doi.org/10.1016/0002-9149(91)90456-U
  2. Le Guludec D, Lautamaki R, Knuuti J, Bax JJ, Bengel FM. Present and future of clinical cardiovascular PET imaging in Europe-a position statement by the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 2008;35:1709-1724. https://doi.org/10.1007/s00259-008-0859-1
  3. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O'Brien HA Jr, Loberg MD. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24:898-906.
  4. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-1058. https://doi.org/10.1016/j.jacc.2006.12.015
  5. Case JA, deKemp RA, Slomka PJ, Smith MF, Heller GV, Cerqueira MD. Status of cardiovascular PET radiation exposure and strategies for reduction: an information statement from the cardiovascular PET task force. J Nucl Cardiol 2017;24:1427-1439. https://doi.org/10.1007/s12350-017-0897-9
  6. Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. Br Med Bull 2013;107:87-100. https://doi.org/10.1093/bmb/ldt026
  7. Mc Ardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, Yam Y, Haddad H, Mielniczuk LM, Stadnick E, Hessian R, Guo A, Beanlands RS, deKemp RA, Chow BJ. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging 2014;7:930-937. https://doi.org/10.1161/CIRCIMAGING.114.002184
  8. Yen CK, Yano Y, Budinger TF, Friedland RP, Derenzo SE, Huesman RH, O'Brien HA. Brain tumor evaluation using Rb-82 and positron emission tomography. J Nucl Med 1982;23:532-537.
  9. Hasbak P, Enevoldsen LH, Fosbol MO, Skovgaard D, Knigge UP, Kjaer A. Rubidium-82 uptake in metastases from neuroendocrine tumors: No flow response to adenosine. J Nucl Cardiol 2016;23:840-842. https://doi.org/10.1007/s12350-015-0251-z
  10. Shafiq A, Ammar KA, Gilles L, Machernis N, Mahlum D, Chareonthaitawee P, Port SC. Metastatic breast cancer diagnosed by rubidium-82 positron emission tomography myocardial perfusion imaging. J Nucl Cardiol 2018;25:1048-1050. https://doi.org/10.1007/s12350-017-0838-7
  11. Jochumsen MR, Tolbod LP, Pedersen BG, Nielsen MM, Hoyer S, Frokiær J, Borre M, Bouchelouche K, Sorensen J. Quantitative tumor perfusion imaging with 82Rubidium-PET/CT in prostate cancer - analytical and clinical validation. J Nucl Med 2019;60:1059-1065. https://doi.org/10.2967/jnumed.118.219188
  12. Alvarez-Diez TM, deKemp R, Beanlands R, Vincent J. Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 1999;50:1015-1023. https://doi.org/10.1016/S0969-8043(98)00170-5
  13. Alliot C, Audouin N, Bonraisin AC, Bosse V, Laize J, Bourdeau C, Mokili BM, Michel N, Haddad F. 82Sr purification procedure using Chelex-100 resin. Appl Radiat Isot 2013;74:56-60. https://doi.org/10.1016/j.apradiso.2012.10.020
  14. Mausner LF, Prach T, Srivastava SC. Production of 82Sr by proton irradiation of RbCl. Appl Radiat Isot 1987;38:181-184. https://doi.org/10.1016/0883-2889(87)90084-0
  15. Phillips DR, Peterson EJ, Taylor WA, Jamriska DJ, Hamilton VT, Kitten JJ, Valdez FO, Salazar LL, Pitt LR, Heaton RC, Kolsky KL, Mausner LF, Kurczak S, Zhuikov BL, Kokhanyuk VM, Konyakhin NA, Nortier FM, van der Walt TN, Hanekom J, Sosnowski KM, Carty JS. Production of strontium-82 for the $Cardiogen^{(R)}$ PET generator: a project of the Department of Energy Virtual Isotope Center. Radiochim Acta 2000;88:149-155 https://doi.org/10.1524/ract.2000.88.3-4.149
  16. International Atomic Energy Agency. Production of long lived parent radionuclides for generator: 68Ge, 82Sr, 90Sr and 188W. IAEA radioisotopes and radiopharmaceuticals series No.2. Vienna: IAEA; 2010.
  17. Grant PM, Erdal BR, O'Brien HA Jr. A 82Sr-82Rb isotope generator for use in nuclear medicine. J Nucl Med 1975;16:300-304.