DOI QR코드

DOI QR Code

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror

Graded 다층박막거울을 이용한 단색 엑스선 획득

  • Ryu, Cheolwoo (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Choi, Byoungjung (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Son, Hyunhwa (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Kwon, Youngman (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Kim, Byoungwook (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Kim, Youngju (Radiation Imaging Technology Center of Jeonbuk TECHNOPARK) ;
  • Chon, Kwonsu (Department of Radiological Science of Daegu Catholic University)
  • 유철우 (전북테크노파크 방사선영상기술센터) ;
  • 최병정 (전북테크노파크 방사선영상기술센터) ;
  • 손현화 (전북테크노파크 방사선영상기술센터) ;
  • 권영만 (전북테크노파크 방사선영상기술센터) ;
  • 김병욱 (전북테크노파크 방사선영상기술센터) ;
  • 김영주 (전북테크노파크 방사선영상기술센터) ;
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2015.02.04
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.

최근 의료영상기술에서 유방암 엑스선 진단기술의 주요 이슈는 정확한 조기암 진단과 환자의 피폭선량의 감소에 있다. 엑스선 영상대비도를 높이고 피폭선량을 줄이는 기술 중 하나로써 다층박막거울을 이용한 단색 엑스선을 획득하는 연구가 선행되어 왔다. 그러나 기존의 Uniform 다층박막거울은 거울면의 일부 반사영역에서만 원하는 파장대역의 단색 엑스선을 얻을 수 있어서 엑스선 영상기술 응용에 한계가 있다. 본 연구에서는 다층박막거울의 전 영역에 걸쳐 동일한 단색엑스선을 얻기 위해 거울에 입사하는 백색 엑스선의 입사각에 상응하는 선형적 기울기의 박막두께를 갖는 Graded 다층박막거울을 설계하였고, 기존 이온빔 스퍼터링 장치에 마스크 제어 장치를 추가 제작하여 $100{\times}100mm^2$ 크기로 제작하였다. 제작된 Graded 다층박막거울은 17.5keV의 단색 엑스선을 획득할 수 있도록 설계하였으며 박막두께주기는 2.88nm~4.62nm(Center 3.87nm)이다. 엑스선 반사율은 60% 이상이며, 단색 엑스선의 FWHM은 1.4keV 이하이고 엑스선 빔 폭은 3mm정도이다. 유방촬영에 적합한 몰리브덴 특성엑스선에 해당하는 17.5keV의 단색 엑스선을 얻음으로써 저선량 고감도 유방암 진단장치 개발에 응용할 수 있을 것으로 기대된다.

Keywords

References

  1. Kwon Su, Chon., "Interdiffusion Region in a Tungsten-Carbon Multilayer Coating of Small d-Spacing," Korean Physical Society 54, pp. 23-28, 2009. https://doi.org/10.3938/jkps.54.23
  2. Schnopper, H. W., Romaine, S., and Krol, A., "X-ray monochromator for divergent beam radiography using conventional and laser produced x-ray sources," Proceedings of SPIE Vol. 4502, pp. 19-29, 2001.
  3. Millar JJ, Barnea Z: A simple x-ray crystal monochromator, Journal of Physics E: Scientific Instrument, 3, pp. 570-571, 1970. https://doi.org/10.1088/0022-3735/3/7/431
  4. Tkachuk A, Duewer F, Cui H, Feser M, Wang S, Yun W: X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source, Zeitschrift Kristallographie, 222, pp. 650-655, 2007
  5. Carroll, F. E., "Tunable monochromatic x-rays: a new paradigm of medicine," American Roentgen Rays Society 179, pp. 583-590, 2002. https://doi.org/10.2214/ajr.179.3.1790583
  6. Chon KS, Yoon KH, Monochromatic X-ray Imaging System Using a W/C Multilayer Mirror, Journal of the Korean Physical Society 2009, 55(6), pp. 2571-2577, 2009 https://doi.org/10.3938/jkps.55.2571
  7. Chon KS, Optimum Design and Tolerance Analysis of Multilayer Mirror for Obtaining Characteristic X-ray of 17.5 keV, Journal of the Korean Society of Radiology, v.3, no.4, pp. 23-28, 2009
  8. Harms, R. J., Serlemitsos, P. J., Owens, S. M., "Thin film multilayer fan-beam x-ray monochromator," Proceedings of SPIE Vol. 4501, pp. 193-200, 2001.
  9. Lawaczeck, R., Rein, V., Deeg, W., "Dedicated mammography: Imaging with monochromatic X-rays and a clinical mammography unit," Nuclear Instruments and Methods in Physics Research A 548, pp. 147-154, 2005. https://doi.org/10.1016/j.nima.2005.03.082
  10. Baldelli, P., Taibi, A., Tuffanelli, A., Gilardoni, M. C., and Gambaccini, M., "A prototype of a quasi-monochromatic system for mammography applications," Phys. Med. Biol. 50 pp. 2225-2240, 2005. https://doi.org/10.1088/0031-9155/50/10/003
  11. Bushberg JT, Seibert JA, Leidhold Jr. EM, Boone JM : The essential physics of medical imaging, 2nd ed., Lippincott Williams & Wilkins, Philadelphia, 2001.
  12. Spiller E, Soft X-Ray Optics, SPIE Optical Engineering Press, Bellingham, 1994.