• Title/Summary/Keyword: Radiation Over-exposure

Search Result 163, Processing Time 0.028 seconds

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

Chromosomal Aberrations Induced in Human Lymphocytes by in vitro Irradiation with $^{60}Co\;{\gamma}-rays$ (체외 방사선조사시 인체 말초혈액 임파구의 염색체이상 빈도에 관한 연구)

  • Ahn, Yong-Chan;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • As guides to decision-making in the management of the victims in case of acute whole body or partial body radiation exposure, we studied the relationship between radiation dose and the frequency of chromosomal aberrations observed in peripheral lymphocytes that were irradiated in vitro with $^{60}Co\;{\gamma}-rays$ at doses ranging from 2Gy to 12Gy. The yields of cells with unstable chromosomal aberrations (dicentric chromosomes, ring chromosomes, and acentric fragment pairs) were 32% at 2Gy, 47% at 4Gy, 80% at 6Gy, 94% at 8Gy, and 100% at 10Gy and over. Ydr, which reflect average dose to the whole body in case of acute whole body exposure, were 1.373 at 2Gy, 0.669 at 4Gy, 1.734 at 6Gy, 2.773 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. The relationship between radiation dose (D) and the frequency of dicentric plus ring chromosomes per cell(Ydr) could be expressed as $Ydr=9.322{\times}10^{-2}/Gy {\times}D+2.975{\times}10^{-2}/Gy^2{\times}D^2$. Qdr, which are used in estimating dose of partial body exposure and dose of past exposure, were 1.166 at 2Gy, 1.436 at 4Gy, 2.173 at 6Gy, 2.945 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. To see how confidently this dosimetry system may be used, we obtained Qdr values from those who received one fraction of homogenous partial body irradiation of 1.BGy, 2.5Gy, and 7.OGy therapeutically; in vivo Qdr values were 1.109, 1.222 and 2.222 respectively. The estimated doses calculated from these in vivo Qdr values using the equation $Qdr=Ydr/(1- e^{-Ydr})$ were 1.52Gy, 2.48Gy, and 6.54Gy respectively, which were very close to the doses actually given.

  • PDF

The development of photo-diode dosimeter(PD-2000) for the diagnostic X-ray Energy (X선 진단영역 에너지 측정을 위한 Photo-Diode 선량계(PD-2000)의 개발)

  • Kim, Sung-Chul;Lee, Woo-Chul;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • It was produced radiation dosimeter used photo-diodes for which ionization by x-ray was applied and evaluated the value of utility in clinics as compared with ion-chamber. The result obtained were as follows : 1. Comparison of ion-chamber with photo-diode dosimeter's x-ray output by the change of x-ray tube voltage, and the ratio of ion-chamber to diode was $0.96{\sim}1.02$ which was not affected by x-ray beam quality. 2. The ratio of ion-chamber to diode was 0.96 by change of tube current and 0.97 by change of exposure time that is not affected by x-ray quantity. 3. The ratio of ion-chamber to diode was $0.97{\sim}1.04$ by thickness and $0.93{\sim}1.10$ by radiation field that is little affected by second ray quantity. 4. Reproducibility of photo-diode dosimeter was 0.011(CV) and it is a good result. 5. Photo-diode dosimeter was affected by the surface angle of detector over 30 degrees. Produced dosimeter was small, light, and meets good result compared with ionization chamber. It was expected come into wide use in clinic.

  • PDF

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Radiobiological Evaluation in Korean Native Goat Bred in the Nuclear Power Plant (원자력발전소 사육 재래산양의 방사선 생물학적 평가)

  • Kim, Se-Ra;Kim, Tae-Hwan;Lee, Hae-Jun;Oh, Heon;Cho, Sung-Ki;Oh, Ki-Seok;Park, In-Chul;Son, Chang-Ho;Kim, Sung-Ho
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.317-322
    • /
    • 2003
  • Cytogenetic and hematological analysis was performed in peripheral blood from the Korean native goat bred in the nuclear power plant (Wolsong and Uljin) and control area. The frequency of micronuclei (MN) in peripheral blood lymphocytes from goat was used as a biomarker of radiobiological effects resulting from exposure to environmental radiation. An estimated dose of radiation was calculated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 to 4 Gy from the goat lymphocytes with in vitro irradiation. MN rates in goats from the Wolsong and Uljin nuclear power plant, and control area were 9.60/1000, 6.83/1000 and 9.88/1000, respectively. There were no significant differences in MN frequencies and hematological values in goats between nuclear power plant and control area. High level of platelet in the goat from Uljin nuclear power plant was observed, which seemed to be related to the goat management.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Comorbid Conditions in Persons Exposed to Ionizing Radiation and Veterans of the Soviet-Afghan War: A Cohort Study in Kazakhstan

  • Saule Sarkulova;Roza Tatayeva;Dinara Urazalina;Ekaterina Ossadchaya;Venera Rakhmetova
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • Objectives: This study investigated the prevalence and characteristics of comorbid conditions in patients exposed to ionizing radiation and those who were involved in the Soviet-Afghan war. Methods: This study analyzed the frequency and spectrum of morbidity and comorbidity in patients over a long-term period (30-35 years) following exposure to ionizing radiation at the Semipalatinsk nuclear test site or the Chornobyl nuclear power plant, and among participants of the Soviet-Afghan war. A cohort study, both prospective and retrospective, was conducted on 675 patients who underwent comprehensive examinations. Results: Numerical data were analyzed using the Statistica 6 program. The results are presented as the mean±standard deviation, median, and interquartile range (25-75th percentiles). The statistical significance of between-group differences was assessed using the Student t-test and Pearson chi-square test. A p-value of less than 0.05 was considered statistically significant. We found a high prevalence of cardiovascular diseases, including hypertension (55.0%) and cardiac ischemia (32.9%); these rates exceeded the average for this age group in the general population. Conclusions: The cumulative impact of causal occupational, environmental, and ultra-high stress factors in the combat zone in participants of the Soviet-Afghan war, along with common conventional factors, contributed to the formation of a specific comorbidity structure. This necessitates a rational approach to identifying early predictors of cardiovascular events and central nervous system disorders, as well as pathognomonic clinical symptoms in this patient cohort. It also underscores the importance of selecting suitable methods and strategies for implementing treatment and prevention measures.

The Influence of E-beam Irradiation on POLY(ETHER-BLOCK-AMIDE) (PEBA, Pebax) (전자 빔 조사후 PEBA (Poly Ether Block Amide)의 구조 및 기계적 특성 변화)

  • Shin, Sukyoung;Cho, SangGyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.205-209
    • /
    • 2014
  • Medical polymers require sterilization and must be able to maintain material properties for a specified shelf life. Sterilization can be achieved by using gamma or e-beam exposure. In this study, accelerated aging tests of poly(ether-block-amide) (PEBA) copolymer samples is presented. PEBA copolymer samples with different polyether content that result in Shore hardness of 35D to 72D, were sterilized using e-beam radiation followed by accelerated aging at $55^{\circ}C$. E-beam sterilization effect on molecular weight and mechanical property has performed and analyzed. The average molecular weight significantly reduced as a result of ageing. The enlarged proportion of low molecular weight chains in the aged samples is consistent with the generation of degradation products produced by oxidative chain scission. Also E-beam materials have shown decreased tensile strength and elongation. Overall, this study demonstrated that the medical grade PEBA was significantly affected by radiation exposure over aging time, particularly at high irradiation doses. For medical use in case of radiation sterilization required, it is recommended to avoid Pebax material. If Pebax material must be in use for medical device, recommend to use alternate sterilization method such as Ethylene Oxide sterilization.

Comparison of the Measured Radiation Dose-rate by the Ionization Chamber and GM(Geiger-Müller) Counter After Radioactive Iodine Therapy in Differentiated Thyroid Cancer Patients (분화성 갑상선암환자의 방사성 요오드 치료시 전리함과 Geiger-Muller계수관에서 방사선량률 측정값 비교)

  • Park, Kwang-hun;Kim, Kgu-hwan
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.565-570
    • /
    • 2016
  • Radioactive iodine($^{131}I$) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.