• Title/Summary/Keyword: Radiation Monitoring

Search Result 530, Processing Time 0.034 seconds

Assessment of supervision monitoring for radiation environment around the typical research reactors in China

  • Li, Sa;Wang, Haipeng;Zhang, Yanxia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4150-4157
    • /
    • 2021
  • The supervision mode, monitoring basis and monitoring scheme of radiation environment monitoring concerning typical research reactors in China were investigated in this study. Summary and analysis were concluded of the present situation of supervised monitoring of radiation environment, such as monitoring objects, points, frequency and so on, based on the relevant data of monitoring points of four typical research reactors in China. Some experiences and existing problems were analyzed concerning the supervised monitoring of China's research reactors. Tips on topics related to strengthen the monitoring of radiation environment around the research reactors has noted.

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Advances in gamma radiation detection systems for emergency radiation monitoring

  • Kumar, K.A. Pradeep;Sundaram, G.A. Shanmugha;Sharma, B.K.;Venkatesh, S.;Thiruvengadathan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2151-2161
    • /
    • 2020
  • The study presents a review of research advancements in the field of gamma radiation detection systems for emergency radiation monitoring, particularly two major sub-systems namely (i) the radiation detector and (ii) the detection platform - air-borne and ground-based. The dynamics and functional characteristics of modern radiation detector active materials are summarized and discussed. The capabilities of both ground-based and aerial vehicle platforms employed in gamma radiation monitoring are deliberated in depth.

The regulatory system for imported-cargo radiation monitoring in Korea and a proposal for its improvement

  • Wo Suk Choi ;Tae Young Kong ;Hee Geun Kim;Eun Ji Lee ;Seong Jun Kim ;Jin Ho Son ;Chang Ju Song;Hwa Pyoung Kim;Cheol Ki Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • To protect people and the environment from environmental radiation, the Act on Protective Action Guidelines against Radiation in the Natural Environment was formulated in Korea in 2011. This law regulates matters related to radiation safety that can be encountered in life. In accordance with this law, radiation monitoring equipment is operated at major airports and ports across the country, ensuring radiation monitoring of imported cargo. Currently, six ministries conduct radiation monitoring of imported cargo: the Nuclear Safety and Security Commission; the Korea Customs Service; the Ministry of Food and Drug Safety; the Ministry of Environment; the Ministry of Agriculture, Food and Rural Affairs; and the Korea Forest Service. Each ministry designates the relevant cargo items for radiation monitoring. The objective of this study was to comprehensively review the Korean radiation monitoring system for imported cargo and identify the areas and scopes of improvement. This paper also proposes a new law and an integrated supervision plan, which involves establishing a dedicated department to enhance the efficiency and professionalism of the national radiation monitoring system for imported cargo. The review will contribute to the development of a more sophisticated national radiation monitoring system for imported cargo.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

Process monitoring of laser welding using chromatic filtering of thermal radiation (열복사의 색수차 공간여과를 이용한 레이저용접 감시기술)

  • 백성훈;박승규;김민석;정진만;김철중
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.18-26
    • /
    • 1999
  • An innovative real-time weld monitoring technique using chromatic filtering of the thermal radiation from a weld pool is developed. The thermal radiation from the weld pool is focused on an aperture and the transmitted thermal radiation is monitored at two wavelengths with high-speed single-element detectors. Due to the chromatic aberration introduced in the focusing optics, the transmittance curve of thermal radiation varies by the wavelength. Owing to this difference in the transmittance, the local variation of thermal radiation from the weld pool can be monitored by processing the two spectroscopic signals from two detectors. In this paper, the algorithms to monitor the laser power on the weld specimen and the focus shift we investigated and the performances of laser power and focus monitoring are shown for a pulsed Nd:YAG laser welding. The monitoring of the weld pool size variation is also discussed.

  • PDF

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong;Feida Chen;Yuehao Rui;Yong Li;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3039-3045
    • /
    • 2023
  • Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.

Radiation image mapping system (방사선 영상 매핑 장치)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1884-1887
    • /
    • 1997
  • The increasing concern over radiation exposure in the nuclear industry has fostered agrressive efforts to reduce the levels of radiation exposure. One area of the effot to reduce the radiation exposure is the development of a remote radiation monitoring system. Remote radiation monitoring can serve many benificaial functions reduce exposure to radiation by plant personnel, impruve the quality of the data that is collected and recognize the radiation environment easily. Radiation mapping system gives a good information that represents radiation level distribution. The system we have developed consists of a data acquistion parts, mobile robot and remote control parts. Data acquisition parts consist of radiation detection module and vision acquistion module which collect radiation data, visiion data and distance information. In remote control parts, the acquision data are processed and displayed. We have constructed radiation mapping image by overlaying the vision and radiation data. The radiation mapping techniques for displaying the results of the survey in an easily comprehendable form will facilitate a better understanding of the radiation environment in the facility. This system can reduce workers radiation exposure and aid to help work plan, so it has significant benifits in cost and safety.

  • PDF

Design of Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine (원자력 및 핵의학 분야용 Total RMS (Radiation Monitoring System)의 설계)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.158-161
    • /
    • 2017
  • In this paper, we propose Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine. The proposed system can expand and control Stack Monitor, Area Monitor, and Water(Liquid) Monitor into one system, and can monitor the signals measured by each radiation detector in an integrated manner. The proposed system consists of a sensor module that detects the radiation, a display unit that displays the radiation dose near the radiation detection location, an alarm unit that reports the alarm when the detected radiation dose reaches the danger level, A Main Hub for collecting and storing the contents to the remote monitoring system, and an RMS Monitoring Unit for clearly displaying the measured radiation dose at the remote site. In order to evaluate the performance of Total RMS for the proposed nuclear and nuclear medicine field, it is confirmed that the measurement uncertainty is less than 8.5% and it operates normally within ${\pm}15%$ of the international standard.