• Title/Summary/Keyword: Radiation Efficiency

Search Result 1,252, Processing Time 0.029 seconds

Research of Efficiency for Gas Electron Multiplier Detector to Monitor Low Energy Gamma-Ray and Beta-Ray (낮은 에너지 감마선과 베타선 모니터링을 위한 Gas Electron Multiplier 검출기의 효율성에 대한 연구)

  • Lee, Soonhyouk;Jung, Jae Hoon;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Radiation monitoring is one of the most important process in all places where radioactive material is used including hospital. In this preliminary study, we made GAS electron multiplier (GEM) detector and acquired relative efficiencies in order to see if GEM detector can be useful in radiation monitoring system. The relative efficiency was acquired by using the ratio of GEM detector efficiency to CdTe detector efficiency. The relative efficiency of 72% and 4% was acquired for beta-ray and gamma-ray respectively.

Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations

  • Park, MinSeok;Kim, Han Sung;Yoo, Jaeryong;Kim, Chan Hyeong;Jang, Won Il;Park, Sunhoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4122-4129
    • /
    • 2021
  • The counting efficiencies obtained using anthropomorphic physical phantoms are generally used in whole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency, and thus, considering individual physical characteristics is crucial to improve the accuracy of activity estimates. In the present study, the counting efficiencies of whole-body counting measurements were calculated considering individual physical characteristics by employing Monte Carlo simulation for calibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counters were used for calculating the counting efficiencies. The counting efficiencies were obtained from 19 computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms range from 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measured individual. Taking into account the body size, the equations for estimating the counting efficiencies were derived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide more accurate measurements of internal contamination in whole-body counting measurements.

A Small Antenna of High Radiation Efficiency Employing a Ground Radiator (그라운드 방사체를 활용한 고효율의 소형 안테나)

  • Choi, Hyeng-Cheul;Lee, Hyung-Jin;Park, Bum-Ki;Jang, Jin-Hyuk;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • This paper introduces the method to utilize a terminal ground as a radiator only using reactive components without an antenna structure. Characteristics of the proposed antenna is compared with that of the meander IFA on the same ground plane($40{\times}20mm^2$) for the bluetooth band. From simulation and measurement data, it is found that the proposed antenna using only capacitors provides the highest radiation efficiency. This is because of that the higher inductance reduces radiation resistance of a ground and the capacitor has a lower loss resistance comparing to that of the IFA or the inductor. In spite of the high radiation efficiency, the area ($5{\times}2.5mm^2$) of the proposed antenna is less than half of the area ($12{\times}2.5mm^2$) of the IFA.

Study on the Performance of the Flat-Plate Solar Collectors (평면식 태양열 집열기의 성능에 관한 연구)

  • 장규섭;김만수
    • Journal of Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.37-45
    • /
    • 1977
  • Solar energy is a potential source of power that offers much promise being used for low-temperature applications like drying farm crops, space heating, and water heating for domestic uses. Already much of it are being used for those purpose in foreign countries. However, very little research has been done to determine the possibility of using the solar energy in Korea. This study was conducted to develop the general prediction equation of the total radiation on a horizontal surface in Daejeon area based on 5 years 91972, Jun.1-1976. Dec.31) meteorological data (bright sunshine hours, average total horizontal radiation), and to obtain experimentally the thermal efficiency of solar air and water collectors, which will be used as a basic data of designing flat-plate solar collector system.In addition to the thermal efficiency of the collectorsthe relationship among those factors affecting it such as weather condition, orientation factor, and tilted angle of collector was analyzed. The results of this study were as follows. 1. The general predicted equation of the total radiation on a horizontal surface in Daejeon area based on bright sunshine hours was developed as $H_{av} =(1.546\frac{n}{N}-0.582)H_o$. Predicting the total radiation on a horizontal surface by the above equation was thought to be possible because to values of 0.882 was smaller than any t values at above 0.05 level on the basis of two tailed test of the difference between the calculated and the recorded values. 2.It was observed that optimum tilt angle of the collector in the summer and the autumn drying season was 13 degrees and 51 degrees respectively, these values could be obtained by adding or substracting approximately 25 degrees from the latitude of this area $(36.3^{\circ}N)$ .The relationship between orientation factor and declination of sun at suitable tilt angle of 33 degrees $(s=0.9\O)$ was shown at Fig.4. 3.The thermal efficiency of solar wdter collector was shown 13.4-51. 6% on Aug. 15 (the minimum radiation recorded) and 43.8 ~537% Aug.20 (the maximum radiation recorded), and 13.8~ 46.6 and 44.3~ 49.7 were shown on each corresponding day. 4.The thermal efficiency of the collectors according to the weather condition was shown a big difference of about 10% between the day of the maximum radiation recorded and the minimum, but the differen of efficiency between the air and the water collector was at most 2 ~ 3%. 5. Even if the efficiency of the solar water collector was a little higher than the solar air collector, for drying farm products, the solar air collector was thought to be more effective because the air heated by collector could be directly used for drying them.

  • PDF

Prediction of Total Acoustic Radiation Power of the Submerged Circular Cylindrical Structures (수중 원통형 구조물의 총 음향방사파워 예측)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.876-882
    • /
    • 2014
  • This study investigates an efficient method to estimate the total acoustic radiation power of submerged circular cylindrical structures. Since the acoustic radiation power of submerged vehicles can be changed during the operation, the estimation for its monitoring onboard is required to accomplish the missions. The total acoustic radiation power is estimated using the measured velocity and the calculated radiation efficiency of the surface which consists of submerged rectangular plate elements. Experiments are carried out to validate the estimation approach. Comparisons of the estimation results with the measurements show that they are in a good agreement for the mid-high frequency range and match well for the cases of different excitation locations which correspond to the different operation modes of underwater vehicles as well. Therefore, this estimation method can be applied effectively to the development of the radiated noise monitoring-system.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Optimization of radiation shields made of Fe and Pb for the spent nuclear fuel transport casks

  • V.G. Rudychev;N.A. Azarenkov;I.O. Girka;Y.V. Rudychev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.690-695
    • /
    • 2023
  • Recommendations are given to improve the efficiency of radiation protection of transport casks for SNF transportation. The attenuation of ${\gamma}$-quanta of long-lived isotopes 134Cs, 137mBa(137Cs), 154Eu and 60Co by optimizing the thicknesses and arrangement of layers of Fe and Pb radiation shields of transport casks is studied. The fixed radiation shielding mass (fixed mass thickness) is chosen as the main optimization criterion. The effect of the placement order of Fe and Pb layers in a combined two-layer radiation shield with an equivalent thickness of 30 cm is studied in detail. It is shown that with the same mass thicknesses of the Fe and Pb layers, the placement of Fe in the first layer, and Pb - in the second one provides more than twofold attenuation of ${\gamma}$-quanta compared to the reverse placement: Pb - in the first layer, Fe - in the second. The increase in the efficiency of attenuation of ${\gamma}$-quanta for TC with combined shielding of Fe and Pb is shown to be achieved by designing the first layer of radiation shielding around the canister with SNF from Fe of the maximum possible thickness.

Analysis on the Energy Performance of Solar Water Heating System according to the Configuration of Flat Plate Collectors (태양열급탕시스템의 집열기 배열에 따른 에너지성능 분석 및 평가)

  • Ko, Myeong-Jin;Lim, Bo-Min;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.49-56
    • /
    • 2016
  • The objective of this work is to analyze the variation in energy performance for each flat plate collector connected in series. In this study, it was assumed that solar water heating system with annual solar fraction of 60% was installed in an office building in Seoul, South Korea. The transient energy performance corresponding to four cases, which are selected using different solar radiation and outdoor air temperature, is studied by analyzing the variation in outlet temperature, solar useful heat gain, and thermal efficiency of each collector. It is observed that the useful heat gain and the collector efficiency decrease continuously, and outlet temperature increases when increasing the number of collector connected in series. The long-term performance is assessed by evaluating the thermal efficiency of each collector for two solar radiation conditions ranging from 780 to $820W/m^2$ and from 380 to $420W/m^2$. It is found that the differences between the intercept and slope of the efficiency curves for first and eighth collectors are 3.68% and 6.74% for solar radiation of $800{\pm}20W/m^2$ and 8.57% and 12.90% for solar radiation of $400{\pm}20W/m^2$, respectively. In addition, it is interesting to note that annual useful heat gain and collector efficiency are reduced with similar rate of about 6.13% when increasing the collector area by connecting the collectors in series.

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

Analysis of the Radiation Characteristics of the Parabola Reflector Antenna (포물면 반사판 안테나의 복사 특성 해석)

  • Cho, Tae-Beam;Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.147-158
    • /
    • 1998
  • The purpose of thesis is to analyze the radiation characteristics of the parabola reflector antenna. The equivalent sources are used to compute the radiation fields in the far-zone utilizing the aperture integration. Using these results, we obtain the efficiency parameters associated with reflector : aperture efficiency, spillover efficiency, as the function of F/D, diameter beam squint angle and misarrangement.

  • PDF