• Title/Summary/Keyword: Radiation Dosimetry

Search Result 617, Processing Time 0.023 seconds

LET Calibration of Fe 500 MeV/u Ions using SSNTD (고체비적검출기를 이용한 500 MeV/u 철 이온의 선에너지전이 교정)

  • KIM, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • In this study, LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) was performed using 500 MeV/u Fe heavy ions in HIMAC (Heavy Ion Medical Accelerator) for high LET radiation dosimetry. The irradiated CR-39 SSNDT were etched according JAXA (Japan Aerospace Exploration Agency) etching conditions. And the etched SSNTD were analyzed by using Image J. Determined dose-mean lineal energy ($\overline{y_D}$) of 500 MeV/u Fe is about 283.3 keV/um by using the CR-39 SSNTD. This value is very similar result compare to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC active radiation detector. We confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry such as heavy iron ions.

Verification of Extended Source-To-Imager Distance (SID) Correction for Portal Dosimetry

  • Son, Jaeman;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • This study aimed to evaluate and verify a process for correcting the extended source-to-imager distance (SID) in portal dosimetry (PD). In this study, eight treatment plans (four volumetric modulated arc therapy and four intensity-modulated radiation therapy plans) at different treatment sites and beam energies were selected for measurement. A Varian PD system with portal dose image prediction (PDIP) was used for the measurement and verification. To verify the integrity of the plan, independent measurements were performed with the MapCHECK device. The predicted and measured fluence were evaluated using the gamma passing rate. The output ratio was defined as the ratio of the absolute dose of the reference SID (100 cm) to that of each SID (120 cm or 140 cm). The measured fluence for each SID was absolutely and relatively compared. The average SID output ratios were 0.687 and 0.518 for 120 SID and 140 SID, respectively; the ratio showed less than 1% agreement with the calculation obtained by using the inverse square law. The resolution of the acquired EPIDs were 0.336, 0.280, and 0.240 for 100, 120, and 140 SID, respectively. The gamma passing rates with PD and MapCHECK exceeded 98% for all treatment plans and SIDs. When autoalignment was performed in PD, the X-offset showed no change, and the Y-offset decreased with increasing SID. The PD-generated PDIP can be used for extended SID without additional correction.

The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea

  • Park, Byeong Ryong;Kim, Jae Seok;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Kang, Yeong-Rok;Kim, HyoJin;Jang, Han-Ki;Han, Ki-Tek;Min, Jeho;Choi, Hoon;Kim, Jeongin;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2379-2386
    • /
    • 2020
  • This paper presents the results of the first intercomparison exercise performed by the Korea retrospective dosimetry (KREDOS) working group using electron paramagnetic resonance (EPR) spectroscopy. The intercomparison employed the alanine dosimeter, which is commonly used as the standard dosimeter in EPR methods. Four laboratories participated in the dose assessment of blind samples, and one laboratory carried out irradiation of blind samples. Two types of alanine dosimeters (Bruker and Magnettech) with different geometries were used. Both dosimeters were blindly irradiated at three dose levels (0.60, 2.70, and 8.00 Gy) and four samples per dose were distributed to the participating laboratories. Assessments of blind doses by the laboratories were performed using their own measurement protocols. One laboratory did not participate in the measurements of Magnettech alanine dosimeter samples. Intercomparison results were analyzed by calculating the relative bias, En value, and z-score. The results reported by participating laboratories were overall satisfactory for doses of 2.70 and 8.00 Gy but were considerably overestimated with a relative bias range of 10-95% for 0.60 Gy, which is lower than the minimum detectable dose (MDD) of the alanine dosimeter. After the first intercomparison, participating laboratories are working to improve their alanine-EPR dosimetry systems through continuous meetings and are preparing a second intercomparison exercise for other materials.

Fast Neutron Flux Determination by Using Ex-vessel Dosimetry (노외 감시자를 이용한 압력용기 중성자 조사량 결정)

  • Yoo, Choon-Sung;Park, Jong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.158-167
    • /
    • 2007
  • It is required that the neutron dosimetry be present to monitor the reactor vessel throughout its plant life. The Ex-vessel Neutron Dosimetry Systems which consist of sensor sets, radiometric monitors, gradient chains, and support hardware have been installed for 3-Loop plants after a complete withdrawal of all six in-vessel surveillance capsules. The systems have been installed in the reactor cavity annulus in order to characterize the neutron energy spectrum over the beltline region of the reactor vessel. The installed dosimetry were withdrawn and evaluated after a irradiation during one cycle and then compared to the cycle specific neutron transport calculations. The reaction rates from the measurement and calculation were compared and the results show good agreements each other.

A Study on the Angular Dependence of the PB-3 Dosimeter Using Teledyne 9150 TLD Reader System (열형광선량계(도시메터타입 : PB-3)의 방향의존성에 관한 연구)

  • Son, Jung-Kwon;Kim, Jong-Kyung;Yoon, Suk-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.189-198
    • /
    • 1994
  • An angular dependence experiment was made and a performance test of the Teledyne dosimetry system was done in accordance with the ANSI N13.11-1992. The angular dependence experiment was performed with $^{137}Cs$ and low energy X-ray beam. Teledyne dosimetry system performed well at the $0^{\circ}$ angle of incidence for all dosimeters in both vertical and horizontal irradiations. It would have easily passed the 0.5 tolerance limit. But the dosimetry system was not performed well at the ${\pm}60^{\circ}$ angle of incidence for low energy X-ray beam. The accuracy for $^{137}Cs$ beam at all angles of incidence was within the 0.5 tolerance limit. Therefore performance of the dosimetry system could be considered acceptable in case that the dosimeter is irradiated to $^{137}Cs$ beam. However, it could not be acceptable for the dosimeter irradiated to low energy X-ray, especially at more than ${\pm}40^{\circ}$

  • PDF

OVERVIEW OF HEALTH PHYSICS STUDIES ON TRITIUM BETA RADIATION (삼중수소 베타방사선에 관한 보건물리 연구의 적용)

  • Hwang, Sun-Tae;Hah, Suk-Ho
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.75-85
    • /
    • 1994
  • As we enter the 2000s, there are four nuclear power units of the pressurized heavy water reactor-type in the commercial operation at the Wolsung Nuclear Power Plant(NPP) site where a larger amount of tritium ($\^$3/H) is released inevitably to the site environment. This radioctive nuclide is easily distributed throghout our environment because of its ubiquitous form as tritiated water (HTO) and its persistence in the environment. Tritum has certain characterisitics that present unique challenges for beta radiation dosimety and health risk assesment. In this paper, therefore, a variety of matters on tritium are considered and reviewed in terms of its characteristics and sources, metabolism and dosimetry, microdosimetry, radiobiology, risk assessment, and transport and cycling in the environment, etc.

  • PDF

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.

Development of a Dose Calibration Program for Various Dosimetry Protocols in High Energy Photon Beams (고 에너지 광자선의 표준측정법에 대한 선량 교정 프로그램 개발)

  • Shin Dong Oh;Park Sung Yong;Ji Young Hoon;Lee Chang Geon;Suh Tae Suk;Kwon Soo IL;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2002
  • Purpose : To develop a dose calibration program for the IAEA TRS-277 and AAPM TG-21, based on the air kerma calibration factor (or the cavity-gas calibration factor), as well as for the IAEA TRS-398 and the AAPM TG-51, based on the absorbed dose to water calibration factor, so as to avoid the unwanted error associated with these calculation procedures. Materials and Methods : Currently, the most widely used dosimetry Protocols of high energy photon beams are the air kerma calibration factor based on the IAEA TRS-277 and the AAPM TG-21. However, this has somewhat complex formalism and limitations for the improvement of the accuracy due to uncertainties of the physical quantities. Recently, the IAEA and the AAPM published the absorbed dose to water calibration factor based, on the IAEA TRS-398 and the AAPM TG-51. The formalism and physical parameters were strictly applied to these four dose calibration programs. The tables and graphs of physical data and the information for ion chambers were numericalized for their incorporation into a database. These programs were developed user to be friendly, with the Visual $C^{++}$ language for their ease of use in a Windows environment according to the recommendation of each protocols. Results : The dose calibration programs for the high energy photon beams, developed for the four protocols, allow the input of informations about a dosimetry system, the characteristics of the beam quality, the measurement conditions and dosimetry results, to enable the minimization of any inter-user variations and errors, during the calculation procedure. Also, it was possible to compare the absorbed dose to water data of the four different protocols at a single reference points. Conclusion : Since this program expressed information in numerical and data-based forms for the physical parameter tables, graphs and of the ion chambers, the error associated with the procedures and different user could be solved. It was possible to analyze and compare the major difference for each dosimetry protocol, since the program was designed to be user friendly and to accurately calculate the correction factors and absorbed dose. It is expected that accurate dose calculations in high energy photon beams can be made by the users for selecting and performing the appropriate dosimetry protocol.