• Title/Summary/Keyword: Radial piston pump

Search Result 8, Processing Time 0.021 seconds

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

A Characteristic Study of Efficiency in Radial Piston Pump (래이디얼 피스톤 펌프의 효율 특성 연구)

  • 장윤석;천세민;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.106-113
    • /
    • 2000
  • A pump which is a fundamental device in a hydraulic system affects on overall system performance to a great deal. Such problems as leakage and solid friction loss become important in field applications, especially for the case of operation under high pressure and at high speed. So the research on this kind of subjects is necessary to improve the performance of hydraulic devices. A high pressure radial piston pump is analyzed here, which has a stationary cylinder block. It pumps hydraulic fluid by letting camring push a piston in a cylinder. Fluid leaks between the piston and cylinder so that it deteriorates the pump efficiency. Furthermore, the piston happens to touch the cylinder wall to increase the friction loss and wear. In this research, by means of FDM, volumetric, mechanical and overall efficiencies are observed by varying several design Parameters and operation conditions. Design values or their trends are presented to improve these efficiencies.

  • PDF

A Characteristic Study of Efficiency in Radial Piston Pump (레이디얼 피스톤 펌프의 효율 특성 연구)

  • 장윤석;천세민;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.259-265
    • /
    • 2000
  • Pump which is the fundamental device in the hydraulic system affects on overall system performance to a great deal. Such problems as leakage and solid friction loss become important in field applications, especially for the case of operation under high pressure and at high speed. So the research on this kind of subjects is necessary to improve the performance of hydraulic devices. A high pressure radial piston pump is analyzed here, which has a stationary cylinder block. It pumps hydraulic fluid by letting camring push a piston in a cylinder. Fluid leaks between the piston and cylinder so that it deteriorates the pump efficiency. Furthermore, the piston happens to touch the cylinder wall to increase the friction loss and wear. In this research, by means of FDA, volumetric, mechanical and overall efficiencies are observed by varying several design parameters and operation conditions. Design values or their trends are presented to improve these effciencies.

Discharge Flow Characteristics of A Rotating-Cam and Fixed-Cylinder Type Radial Piston Pump (회전 캠 및 고정 실린더식 레이디얼 피스톤 펌프의 송출 유량 특성)

  • Lee, I.Y.;Choi, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2011
  • In the beginning of this study, pressure in a cylinder and flow rate from a cylinder of a rotating-cam and fixed-cylinder type radial piston pump are investigated through numerical simulations, so that the simulation results might be utilized as basements for examining physical phenomena occurring in the pump assembly. Then, for supplying basic knowledge on pump design, pressure, flow and leakage characteristics of the pump assembly under the variations of major design parameters are investigated through numerical simulations. At the end, key design parameters influencing upon volumetric efficiency of the pump are listed.

Pressure Pulsation Characteristics of a Multiple-Delivery Radial Piston Hydrulic Pump (다중 토출 레이디얼 유압 피스톤 펌프의 압력 맥동 특성)

  • Choi, S.R.;Lim, J.C.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the authors carried out experiments and numerical simulations in order to clarify the pressure pulsation characteristics in multiple-delivery rotating-cam and stationary-cylinder type radial piston pumps. Also, a tee filter was applied to the pump in order to mitigate the pressure pulsation. Through the experiments and simulations, it was known that pressure pulsation with a magnitude higher than 40% of the mean load pressure could occur in the pump used in the experiments. Moreover, it was confirmed that a tee filter designed in this study could effectively mitigate the pressure pulsation.

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.