• Title/Summary/Keyword: Radial flow

Search Result 778, Processing Time 0.025 seconds

Evaluation of Well Production by a Riverbank Filtration Facility with Radial Collector Well System in Jeungsan-ri, Changnyeong-gun, Korea (경남 창녕군 증산리 일대 방사집수정을 활용한 강변 여과수 개발량 평가)

  • Lee, Eun-Hee;Hyun, Yun-Jung;Lee, Kang-Kun;Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2010
  • Well production by a riverbank filtration facility with multi-radial collector well systems in Jeungsan-ri, Changnyeong gun, Korea was evaluated. In this study, the drawdown at collector wells due to pumping and groundwater inflow rates along the horizontal arms of the collector wells were computed through numerical simulations. Sensitivities of the well production to hydraulic conductivity and well flow coefficient, which represents the resistance to the flow from the aquifer to the horizontal arms, were analyzed. Simulation results showed that, with given proposed pumping rate conditions, the drawdown in the caisson exceeded maximum drawdown constraints in the study site and the adjustment of the pumping rate at each well is needed. The drawdown is affected by the hydraulic conductivity of the main aquifer and the well flow coefficient, which means the profound field investigation of the study site is needed to accurately estimate the efficiency of riverbank filtration through radial collector wells.

Clinical study of blood flow and vascular reaction in Taeumin CVA patients using Transcranial Doppler (Transcranial Doppler를 이용(利用)한 태음인 중풍환자의 혈류속도(血流速度)와 혈관(血管) 반응성(反應性)에 대한 임상적(臨床的) 고찰(考察))

  • Lim, Jong-Pil;Bae, Na-Young;Han, Kyung-Soo;Ahn, Taek-Won
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2006
  • Purpose Brain vessles have autoregulation function, so even when perfusion pressure drops, cerebral blood flow remain stable by vasodilation. Latest research on this reserve of cerebral vessels is being done using TCD, which measures the reserve of the vessels. We did a research comparing cerebral vessel and peripheral vessel reserve between Taeumin, who are more likely to suffer CVA, and the normal. We observed blood flow of Internal carotid artery siphon and radial indicis artery of the two group with TCD. Method We picked 20 people out of patients diagnosed as cerebral infarction at Cheon-An Oriental hospital of Daejeon University. They were diagnosed as Taeumin with QSCCII questionnaire and constitutional differentiation. Using TCD, we measured highest blood flow rate, mean blood flow and asymmetric counting blood flow of Internal carotid artery siphon and radial indicis artery at rest. And then we measured again after stimulating cerebral vessels, by triggering hypercapnia by self apnea and peripheral vessels by palm heating. Result At rest, mean blood flow rate of Internal carotid artery siphon showed significant decrease compared to control group. Blood flow rate of Internal carotid artery siphon after hypercapnia showed significant decline in highest blood flow rate and mean blood flow compared to control group. Cerebral vessel reaction after the hypercapnia induction showed great change in experiment group than the control group. Peripheral vessel reaction after palm heating showed significant decline in experiment group compared to control group. Conclusion In conclusion, measuring the alteration of blood flow used in diagnosing cerebral infarction, is more sensitive when vessel stimulation is done. Non-invasive TCD is effective especially in case of Taeumin who are more likely to suffer vascular disorder than others.

  • PDF

플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 소음 저감

  • 김규영;최민구;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.719-724
    • /
    • 2003
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel(PDP) television (TV). To reduce the noise, the effects of installation parameters are studied. The experimental parameters under investigation are the distance between the fan and the rear case of a PDP TV, position of the strut on the fan, and the fan RPM. The variance of RPM is the most significant facto., and a 250 RPM decrease from 910 RPM causes about 4㏈(A) reduction in the system noise. To increase performance, flow characteristics are investigated by using a visualization technique and measuring the volume flow rate. The visualized results show that a radial direction flow due to large system resistance is significant, and an axial velocity oscillation is observed from the measurement of the volume flow rate. To prevent both a radial direction flow and an axial velocity oscillation, sponges are inserted in the space between f3n and the rear case. Inserted sponges improve the volume flow rate of cooling fans up to 32% since they convert a radial direction flow to an axial direction flow. Also an axial velocity oscillation with large amplitude and low RPM disappears. Increasing volume flow rate causes the PDP TV to improve its cooling performance. Additionally the same volume flow rate can be obtained with a decreased fan speed due to the inserted sponge. Noise reductions of 4.2 ㏈(A) at the rear and 1.1 ㏈(A) at the front of the TV are obtained by the decreased RPM. An increase of 10% of the volume flow rate is also achieved by inserting sponges.

  • PDF

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

THE EFFECT OF RADIAL TEMPERATURE GRADIENT ON THE CIRCULAR-COUETTE FLOW (반경방향으로의 온도구배가 Circular-Couette 유동에 미치는 영향)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.16-24
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Circular-Couette flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the analytical and experimental results currently available. It turns out that spiral vortices are generated by increasing temperature gradient. We classify the flow patterns for various Grashof number based on the characteristics of flow fields and spiral vortices. The correlation between Richardson number with wave number shows that the spiral angle and size of spiral vortices increase with increasing Richardson number.

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.

Flow Velocity Changes of Carotid, Axillary, Brachial and Radial Artery after Stellate Ganglion Block (성상신경절 차단후 총경동맥, 액와동맥, 상완동맥, 요골동맥의 혈류속도변화)

  • Seo, Young-Sun
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.55-59
    • /
    • 1995
  • Stellate ganglion block (SGB) is applicated frequently to increase the blood flow and to reduce the pain in head, neck and upper extremity. The effects of SGB are able to be estimated by clinical signs and symptoms of Horner's syndrome, skin warmth, anhydrosis, etc. The effects are also estimated by sympathetic function and the blood flow. Blood flow velocities and pulsatility indices of common carotid,d axillary, brachial and radial artery were measured by Doppler flowmeter after SGB with 1% lidocaine at C6 level. Blood velocities of all arteries were increased and pulsatility indices of all arteries were decreased. This results suggest that SGB increase the blood flow of head and upper extremity and Doppler flowmeter is a good indicator of the effects of SGB.

  • PDF

Effects of Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Upward Two-Phase Flow (수직상향 이상류에서 동심원관 간극이 유동양식과 보이드분포에 미치는 영향)

  • Son B. J.;Kim I. S.;Kim M. C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.383-391
    • /
    • 1987
  • An experimental investigation has been conducted to determine the flow pattern for two-component , two-phase mixtures which flow vertically upwards in concentric annuli based on the measurement for the local void fraction and the distribution of the local void fraction in various radial locations in the annular gap. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel rod, The rod diameter is either :2mm,16mm or 20mm. It is demonstrated that the probability density function of the fluctuations in void fraction may be used as an flow pattern indicator and the local void fraction distribution depends on the flow pattern and radial location in the annular passage.

  • PDF

Radial Thickness of Ice Jam in Channel Bends

  • Yoon, Sei-eui;Lee, Jong-tae
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.61-71
    • /
    • 1990
  • The characteristics of radial thickness of ice jam at the center part of channel bends were analyzed briefly in this paper. Jam thickness in channel bends increases both toward the inner bank, and dowmstream. For this study, slope at the jam's underside was assumed to be liner with similarity of radial slope of bed in alluvial bends. Radial slope at the jam's underside in floating ice elements was estimated using the force equilibrium theory in the radial direction. The eqution which can be estimated the radial slope of ice jam was suggested using Falcon and Kennedy's bed layer theory. Experimental data, which were measured at the center part of cross-section in a single 180-degree bend, were compared to the calculated values using the suggested equtions. The result shows that the calcultated values were smaller than the measured ones. Ot is considered that the estimated value of shear stress in the radial direction may be smaller than the actual and two-layer model may be not suibable for alluvial bend flow.

  • PDF

A Study of the Development of a Radial Pleat Module for Low Pressure Using an Ultrafiltration Membrane

  • Seo, Il-Gun;Shin, Se-Jong;Byoung-Ryul;Song, Hee-Yeol
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • A radial pleat module using a polysulfone membrane was developed. The permeation characteristics of the radial pleat module were compared with those of a flat plate module. The average module efficiency of the radial pleat module for the applied pressure range was 82% and was always greater than that of the spiral wound module. For the radial pleat module, in general, as the applied pressure increases, the flux increases and the rejection reduces. The concentration polarization causes the decrease of the flux for the long time operation. But it has been found that the radial pleat module is more efficient for the reduction of the concentration polarization because it has the more effective area per unit volume and can induce the turbulent flow in the module.