• Title/Summary/Keyword: Radial basis function network (RBFN)

Search Result 63, Processing Time 0.028 seconds

Recognition of isolated digits using Predictive RBF Network (Predictive RBFN을 이용한 단독 숫자음 인식)

  • Han Hag-Yong;Kim Sang-Berm;Kim Joo-Sung;Kim Soo-Hoon;Hur Kang-In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.71-76
    • /
    • 1999
  • 본 논문에서 제안한 예측형 RBFN(Radial Basis Function Network)은 HMM과 신경망을 결합한 하이브리드 구조이다. 이 신경망은 HMM으로 추정한 확률분포 파라미터를 사용하여 중간층의 활성화 함수의 출력을 결정하고, 중간층과 출력층의 연결강도만 네트워크 내에서 학습한다. 그리고 HMM으로 추정한 확률분포 파라미터는 두 가지 방법으로 예측형 RBFN에 이용하였다. 첫 번째는 HMM의 각 상태의 혼합수 만큼의 중간층 유니트를 주는 방법이고, 두 번째는 HMM의 혼합수$\times$출력분포수 만큼의 중간층 유니트를 주는 방법이다. 실험결과, 예측형 RBFN은 다른 방법들의 결과보다 $4.5\~6.5\%$ 저하된 결과를 보였지만 다른 신경망에 비해서 학습 반복 횟수를 작게할 수 있었으며 전체 학습시간을 대폭 단축할 수 있었다.

  • PDF

Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components (고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법)

  • Ji, Pyeong-Shik;Lee, Dae-Jong;Lee, Jong-Pil;Lim, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.46-53
    • /
    • 2008
  • In this study, we developed RBFN(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method considers harmonic information as well as fundamental frequency and voltage considered as essential factors in conventional method. Thus, the reposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. RBFN has some advantage such as simple structure and rapid computation ability compared with multi-layer perceptorn which is extensively applied for load modeling. To verify the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynomial method, MLPN and RBFN with no harmonic components.

Adaptive Quantization of Image Sequence using the RBFN (RBFN 신경망을 이용한 동영상의 적응 양자화)

  • 안철준;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents an adaptive quantization of image sequences using the Radial Basis Function Network(RBFN) which classifies interframe image blocks. The clssification algorithm consists of two steps. Blocks are classified into NA(No Activity), SA(Small Activity), VA(Verical Activity), and HA(Horizontal Activity) classes according to edges, image activity and AC anergy distribution. RBFN is trained using the classification results of the above algorithm, which are nonlinear classification features are acquired from the complexity and variability of difference blocks. Simulation result shows that the the adaptive quantization using the RBFN method produced better results better results than that of the sorting and MLP methods.

  • PDF

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

3D face recognition based on radial basis function network (방사 기저 함수 신경망을 이용한 3차원 얼굴인식)

  • Yang, Uk-Il;Sohn, Kwang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.82-92
    • /
    • 2007
  • This paper describes a novel global shape (GS) feature based on radial basis function network (RBFN) and the extraction method of the proposed feature for 3D face recognition. RBFN is the weighted sum of RBfs, it well present the non-linearity of a facial shape using the linear combination of RBFs. It is the proposed facial feature that the weights of RBFN learned by the horizontal profiles of a face. RBFN based feature expresses the locality of the facial shape even if it is GS feature, and it reduces the feature complexity like existing global methods. And it also get the smoothing effect of the facial shape. Through the experiments, we get 94.7% using the proposed feature and hidden markov model (HMM) to match the features for 100 gallery set with those for 300 test set.

On-line Adaptive Control for Robot Manupulators (로봇 매니퓰레이터의 실시간 적응 제어)

  • Lee, Min-Jung;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2729-2731
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators. The structure of the proposed controller consists of a RBFN and a fixed gain PD controller. On the basis of the Lyapunov stability theorem, we guarantee the UUB (uniformly ultimately boundedness) for the total system. And the learning law of RBFN is established by the Lyapunov method. Finally, we apply the proposed controller to tracking control for the 2 link SCARA type robot manipulator.

  • PDF

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

A Power Quality monitoring system using Neural Network (신경망을 이용한 전력품질 진단시스템)

  • Kim Hong Kyun;Lee Jin Mok;Choi Jea Ho;Lee Sang Hoon;Kim Jea Sig
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.202-204
    • /
    • 2004
  • This paper presents a neural network technology for the detection and classification of the various types of power quality disturbances. Power quality phenomena are short-time problems and of many varieties. Particularly, the transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting ·md classifying transient signals at the same time and in an automatic combines the properties of the wavelet transform and the advantages of neural networks. We test two neural network and compare the results of Backpropagation Neural (BPN) network with Radial basis function network (RBFN). RBFN is more useful to detect and classify than BPN. The configuration of the hardware of PQ-DAS and some case studies are described.

  • PDF

Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network (RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법)

  • 최수용;고균병;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.452-460
    • /
    • 2003
  • In this paper, an equalizer(RNE) using nonlinear multilayer combining techniques in Bayesian equalizer with a structure of radial basis function network is proposed in order to simplify the structure and enhance the performance of the equalizer(RE) using a radial basis function network. The conventional RE Produces its output using linear combining the outputs of the basis functions in the hidden layer while the proposed RNE produces its output using nonlinear combining the outputs of the basis function in the first hidden layer. The nonlinear combiner is implemented by multilayer perceptrons(MLPs). In addition, as an infinite impulse response structure, the RNE with decision feedback equalizer (RNDFE) is proposed. The proposed equalizer has simpler structure and shows better performance than the conventional RE in terms of bit error probability and mean square error.

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF