• Title/Summary/Keyword: Radar signal processing algorithm

Search Result 117, Processing Time 0.026 seconds

Signal Processing Algorithm of FMCW RADAR using DSP (DSP를 이용한 FMCW 레이다 신호처리 알고리즘)

  • 한성칠;박상진;강성민;구경헌
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.425-428
    • /
    • 2001
  • In this paper, FMCW radar signal processing technique for the vehicle detection system are studied. And FMCW radar sensor is used as a equipment for vehicle detection. To test the performance of developed algorithm, the evaluation of the algorithm is done by simulation for signal processing technique of vehicle detection system. RADAR signal of a driving vehicle is generated by using the Matlab. Distance and velocity of vehicles are calculated with developed a1gorithm. Also the signal processing procedure is done for the virtual data with FM-AM converted noise.

  • PDF

Multi-Level Fusion Processing Algorithm for Complex Radar Signals Based on Evidence Theory

  • Tian, Runlan;Zhao, Rupeng;Wang, Xiaofeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1243-1257
    • /
    • 2019
  • As current algorithms unable to perform effective fusion processing of unknown complex radar signals lacking database, and the result is unstable, this paper presents a multi-level fusion processing algorithm for complex radar signals based on evidence theory as a solution to this problem. Specifically, the real-time database is initially established, accompanied by similarity model based on parameter type, and then similarity matrix is calculated. D-S evidence theory is subsequently applied to exercise fusion processing on the similarity of parameters concerning each signal and the trust value concerning target framework of each signal in order. The signals are ultimately combined and perfected. The results of simulation experiment reveal that the proposed algorithm can exert favorable effect on the fusion of unknown complex radar signals, with higher efficiency and less time, maintaining stable processing even of considerable samples.

Real-time Pulse Radar Signal Processing Algorithm for Vehicle Detection (실시간 차량 검지를 위한 펄스 레이더 신호처리 알고리즘)

  • Ryu Suk-Kyung;Woo Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.353-357
    • /
    • 2006
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We propose the pulse radar signal processing algorithm in which we devide the trace. data from pulse radar into segments by using SSC concept, and then construct the sectors in accordance with period and amplitude of segments, and finally decide the vehicle detection probability by applying the SSC parameters of each sectors into the discriminant function. We also improve the signal processing time by reducing the quantities of processing data and processing routines.

Antipersonnel Landmine Detection Using Ground Penetrating Radar

  • Shrestha, Shanker-Man;Arai, Ikuo;Tomizawa, Yoshiyuki;Gotoh, Shinji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1064-1066
    • /
    • 2003
  • In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.

  • PDF

Orthogonal Waveform Space Projection Method for Adaptive Jammer Suppression

  • Lee, Kang-In;Yoon, Hojun;Kim, Jongmann;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.868-874
    • /
    • 2018
  • In this paper, we propose a new jammer suppression algorithm that uses orthogonal waveform space projection (OWSP) processing for a multiple input multiple output (MIMO) radar system exposed to a jamming signal. Generally, a conventional suppression algorithm based on adaptive beamforming (ABF) needs a covariance matrix composed of the jammer and noise only. By exploiting the orthogonality of the transmitting waveforms of MIMO, we can construct a transmitting waveform space (TWS). Then, using the OWSP processing, we can build a space orthogonal to the TWS that contains no SOI. By excluding the SOI from the received signal, even in the case that contains the SOI and jamming signal, the proposed algorithm makes it possible to evaluate the covariance matrix for ABF. We applied the proposed OWSP processing to suppressing the jamming signal in bistatic MIMO radar. We verified the performance of the proposed algorithm by comparing the SINR loss to that of the ideal covariance matrix composed of the jammer and noise only. We also derived the computational complexity of the proposed algorithm and compared the estimation of the DOD and DOA using the SOI with those using the generalized likelihood ratio test (GLRT) algorithm.

Design of SW Framework for Airborne Radar Real-time Signal Processing using Modular Programming (모듈화를 활용한 항공기 레이다 실시간 신호처리 SW Framework 설계)

  • Jihyun, Lee;Changki, Lee;Taehee, Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • Radars used by air-crafts have two important characteristics; First, they should have a real-time signal processing system finishing signal processing before deadline while getting and processing successive in-phase and quadrature data. Second, they can cover a lot of modes including A2A(Air to Air), A2G(Air to Gound), A2S(Air to Sea), and Ground Map(GM). So the structure of radar signal processing SWs in modern airborne radars are becoming more complicate. Also, the implementation of radar signal processing SW needs to reuse common code blocks between other modes for efficiency or change some of the code blocks into alternative algorithm blocks. These are the reason why the radar signal processing SW framework suggested in this paper is taking advantage of modular programming. This paper proposes an modular framework applicable on the airborne radar signal processing SW maintaining the real-time characteristic using the signal processing procedures for A2G/A2S as examples.

Signal Processing of the Continuous-Wave Radar for Approach and Retreat of Targets Using I and Q Channels (I/Q 채널을 이용한 연속파 레이다의 표적 접근/후퇴 신호처리)

  • Cho, Choon Sik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.34-37
    • /
    • 2017
  • This letter presents the signal processing of a CW radar (Continuous Wave or Doppler radar) sensor which enables the radar to detect the multiple targets' approaching and retreating using both I and Q channels. The proposed algorithm utilizes the phase change of the Quadrature signal, which occurs when targets move back and forth from the radar. The verification is carried out with the board containing a commercially available MMIC chip and an MCU by analyzing the received data from MMIC. Also the proposed algorithm is downloaded to MCU and the approaching and retreating movement is confirmed. The CW frequency is 24.125 GHz and the transmitter output power used is 7.2 dBm. Detectable distance is about 12 m.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Fast Implementation of the Progressive Edge-Growth Algorithm

  • Chen, Lin;Feng, Da-Zheng
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.240-242
    • /
    • 2009
  • A computationally efficient implementation of the progressive edge-growth algorithm is presented. This implementation uses an array of red-black (RB) trees to manage the layered structure of check nodes and adopts a new strategy to expand the Tanner graph. The complexity analysis and the simulation results show that the proposed approach reduces the computational effort effectively. In constructing a low-density parity check code with a length of $10^4$, the RB-tree-array-based implementation takes no more 10% of the time required by the original method.

  • PDF

Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar (FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.